UNTERBRECHUNGSFREIE STROMVERSORGUNG

TPX33 HIP

300 ÷ 600 kVA ausgang dreiphasig

Bedienungsanleitung

Wir danken Ihnen, dass sie unser Produkt gewählt haben.

Das Unternehmen RPS S.p.A. ist rein auf die Entwicklung und Produktion von statischen USV-Einheiten spezialisiert. Die USV aus dieser Serie sind Hochqualitätsprodukte, die zur Sicherstellung bester Leistungswerte sorgfältig entwickelt und hergestellt wurden.

In der Anleitung verwendete Symbole

In der vorliegenden Anleitung sind einige Arbeiten mit grafischen Symbolen gekennzeichnet, die den Leser auf die Gefährlichkeit dieser Arbeiten hinweisen.

Möglichkeit schwerer Verletzungen oder starker Schäden am Gerät, wenn keine ausreichenden Vorsichtsmaßnahmen getroffen werden.

Dieses Symbol weist auf eine wichtige Information hin, die aufmerksam durchgelesen werden muss.

Teil der Anleitung, der gelesen werden sollte.

Zu tragende Schutzausrüstungen

Es ist streng verboten Wartungsarbeiten ohne die nachstehend angegebene, persönliche Schutzausrüstung (PSA) am Gerät vorzunehmen.

Das mit der Geräte-Installation oder Wartung beauftragte Personal darf weder Kleidungsstücke mit weiten Ärmeln, noch Schnürriemen, Gürtel, Armbänder oder andere Teile tragen, die, speziell wenn es sich um Metallteile handelt, ein Risiko darstellen. Eventuelle lange Haare müssen so zusammengefasst werden, dass sie keine Gefahr darstellen.

In den folgenden Hinweisschildern sind die zu tragenden Schutzausrüstungen zusammengefasst. Die einzelnen Ausrüstungen müssen abhängig von der bei dem Gerät bestehenden Gefahrenart (besonders bei elektrischen Gefahren) festgelegt und bemessen werden.

	Sicherheitsschuhe	60	Schutzbrille
	Verwendung: Immer		Verwendung: Immer
1	Schutzkleidung Verwendung: Immer		Helm Verwendung: Wenn hängende Lasten vorhanden sind
	Arbeitshandschuhe		
	Verwendung: Immer		

Definition von "Bediener" und "Fachtechniker"

Das Bedienungspersonal, das für normale Wartungsarbeiten Zugang zum Gerät hat, wird als *Bediener* definiert. Mit dieser Definition versteht man das Personal, das die Betriebs- und Wartungsarten für das Gerät kennt, und das folgenden Voraussetzungen erfüllt:

- 1. Eine Ausbildung mit Befähigung zu Arbeiten gemäß der Sicherheitsstandards, abhängig von den Gefahren die das Vorhandensein elektrischer Spannung bedeutet.
- Eine Ausbildung zur Verwendung persönlicher Schutzausrüstungen (PSA) und zu Erste Hilfe Maßnahmen.

Das Personal, das mit der Installation, der Inbetriebnahme und eventuellen außerordentlichen Wartungsarbeiten beauftragt ist, wird als *Fachtechniker* definiert.

Mit dieser Definition versteht man das Personal, das außer den Voraussetzungen, die für den Bediener aufgelistet worden sind, folgendes erfüllen muss:

- 1. Es muss ausreichend vom Hersteller oder seinem Vertreter unterwiesen worden sein.
- 2. Es muss die Arten für Installation, Montage, Reparatur und Betrieb kennen und über eine spezifische, technische Eignung verfügen.
- 3. Es muss eine technische Fachausbildung haben, oder zumindest eine spezifische Ausbildung zur Bedienung und Wartung des Gerätes unter Sicherheitsbedingungen haben.

Rettungsmaßnahmen

Die folgenden Informationen haben allgemeinen Charakter.

Erste Hilfe Maßnahmen

Für die Erste Hilfe Maßnahmen müssen die Unternehmens-Richtlinien und die traditionellen Verfahren eingehalten werden.

Brandbekämpfungs-Maßnahmen

- 1. Zum Löschen von Bränden kein Wasser verwenden, sondern nur Feuerlöscher benutzen, die für elektrische und elektronische Geräte geeignet sind.
- 2. Bei Erhitzung oder bei Brand können einige Produkte giftigen Rauch in die Atmosphäre freisetzen. Beim Löschen immer ein Atemschutzgerät tragen.

ALLGEMEINE HINWEISE

Das Handbuch enthält die Anleitungen für die Bedienung, Installation und Inbetriebnahme der MASTER HP. Vor der Installation das Handbuch aufmerksam durchlesen. Für Informationen zur Bedienung des Gerätes muss diese Bedienungsanleitung sorgfältig aufbewahrt und vor Arbeiten an der USV zu Rate gezogen werden.

Das Gerät ist entsprechend der Produktnormen entwickelt und hergestellt worden. Dabei wurde der normale und halbwegs vorhersehbare Einsatz berücksichtigt. Auf keinen Fall zugelassen ist ein Einsatz zu anderen als den vorgesehenen Zwecken oder ein Einsatz mit anderen als in der Bedienungsanleitung angegebenen Arten. Die einzelnen Eingriffe müssen nach den in der Bedienungsanleitung beschriebenen Kriterien und in der angegebenen Reihenfolge vorgenommen werden.

VORSICHTSMASSNAHMEN UND SICHERHEITSVORSCHRIFTEN

Siehe die "Sicherheits-und Konformitätshandbuch" die zusammen mit der USV (0MNA141_NE).

UMWELTSCHUTZ

Bei der Entwicklung seiner Erzeugnisse widmet das Unternehmen der Untersuchung der Umweltaspekte großzügige Ressourcen.

Alle unsere Erzeugnisse verfolgen die im Einklang mit den geltenden Vorschriften festgelegten Ziele des vom Unternehmen entwickelten Umweltmanagements.

In diesem Erzeugnis wurden keine gefährlichen Stoffe wie CFC, HCFC oder Asbest verarbeitet.

In der Bewertung der Verpackungen bevorzugte die Wahl recycelbare Werkstoffe.

Für eine ordnungsgemäße Entsorgung wird gebeten, die Werkstoffart der Verpackung gemäß folgender Tabelle zu trennen und zu bestimmen. Jedes Material gemäß den im Lande des Gebrauchs des Erzeugnisses geltenden Vorschriften entsorgen.

BESCHREIBUNG	WERKSTOFF
Schachtel	Karton
Schutzhülle	Polyäthylen
Zubehörbeutel	Polyäthylen

Entsorgung des Erzeugnisses

Die USV-Einheit enthalten elektronische Schaltkarten und Batterien, die als GIFTIGER und GEFÄHRLICHER ABFALL gelten. Nach Ablauf der Lebenszeit des Erzeugnisses, diesen gemäß den örtlichen Gesetzen behandeln.

Die ordnungsgemäße Entsorgung trägt dazu bei, die Umwelt und die Gesundheit der Personen zu schützen

Vorbehaltlich der Genehmigung durch die Herstellerfirma, ist die Wiedergabe jedweden Teils, auch auszugsweise, der vorliegenden Bedienungsanleitung verboten. Für Verbesserungen behält sich der Hersteller das Recht vor, das beschriebene Produkt jederzeit und ohne Vorankündigung abzuändern.

Diese Seite wurde absichtlich leer gelassen

INHALTSVERZEICHNIS

<i>1</i> .	V	ORBEREITUNGSARBEITEN	<i>9</i>
	1.1	Auspacken und Aufstellen	9
	1.2	Lagerung	
	1.3	Handling	
2.	7.	STALLATIONSUMGEBUNG	10
2.			
	2.1	Umgebungsbedingungen:	
	2.2	Raum-Abmessungen	
	2.3	Raum-Kühlung	
	2.4	Luftaustausch für Batterieraum	11
<i>3</i> .	U_{k}	SV in Einzelkonfiguration	12
	3.1	Vorbereitung der elektrischen Anlage	12
	3.	1.1 Eingang	12
		1.2 Selektivität	
		1.3 Batterie	
		1.1 Neutratieter	
		1.3 Schutz gegen Spannungs-Rückspeisung	
	3.	1.4 Vorrichtung für Notabschaltung (EPO)	
	3.2	Anschlüsse an Netz, Last und Batterie	
	3.3	Anschluss von Signalen und Fernsteuerungen	19
	3.	3.1 Kabelstecker für EPO (Steuerungen Notabschaltung)	19
		3.2 ALARME UND FERNSTEUERUNGEN	
		3.3 RS232	
		3.1 Parallelschaltung (optional)	
		3.3 ALARM-FERNANZEIGE (2 optionale Karten)	
		3.4 MULTI I/O (optional)	
	3.	3.5 MODEM (optional)	
		3.6 REMOTE SCHALTTAFEL (OPTIONAL)	
	3.	3.7 Dual Bus System – UGS (optional)	22
	3. 3.4	3.8 SWOUT und SWMB aux - Batterie-Temperatursensor (optional) Startverfahren	
		4.1 Kontrolle Batteriebetrieb	
	3.5	Betriebsarten	
		5.1 On - line - Fabrikseitige Einstellung	
		5.3 Standby-off (bei vorhandenem Netz wird die Last nicht versorgt)	
		5.4 Stabilisator (Betrieb im BetriebsART On-line ohne Batterie)	
	3.	5.5 Frequenzwandler (von 50 auf 60Hz oder umgekehrt)	29
	3.6	Kundenspezifische Einstellungen	30
	3.7	Verfahren zur Last-Übergabe von USV auf Wartungs-Bypass	30
	3.8	Ausschalten der USV und der Last	31
	3.9	Blockschaltbild	32
	3 10	Rauteile des Rlockschalthildes	33

<i>4</i> .	PARALLELSYSTEM	36
	4.1 Einleitung	36
	4.2 Vorbereitung der elektrischen Anlage	37
	4.2.1 Eingang	37
	4.2.2 Differenzial	37
	4.2.3 Vorrichtung für Notabschaltung (EPO)	37
	4.2.4 Externer Wartungs-By-Pass	38
	4.3 Anschlüsse an Netz, Last und Batterie	39
	4.3.1 Leistungsanschlüsse Eingang/ Ausgang USV AC	39
	4.3.2 Leistungsanschlüsse Batterieseitig	40
	4.4 Anschluss für Signale	42
	4.5 Startverfahren	45
	4.6 Betriebsarten	46
	4.7 Wartungs-Bypass	48
<i>5</i> .	WARTUNG	52
6.	ALLGEMEINE TECHNISCHE ANGABEN	54
<i>7</i> .	ANHANG A – KARTE ALARME UND FERNSTEUERUNGEN	57

1. Vorbereitungsarbeiten

1.1 Auspacken und Aufstellen

Bei der Lieferung muss die Verpackung kontrolliert werden. Sicherstellen, dass die Verpackung unbeschädigt und ohne Druckstellen und Verformungen ist. Speziell überprüfen, dass keine der Stoßschutz-Vorrichtungen an der Verpackung rot ist. Andernfalls die Anweisungen auf der Verpackung befolgen.

Auf den Transportunterlagen sind die Geräte-Daten angegeben. Auf der Liste (Packliste) der einzelnen Einheiten, aus denen das Gerät besteht, sind die Kennzeichnung, das Gewicht und die Abmessungen angegeben.

Nach dem Auspacken eine Sichtkontrolle innen und außen am Gerät vornehmen. Eventuelle Verformungen weisen auf Stöße während des Transports hin, die den normalen Betrieb beeinträchtigen können.

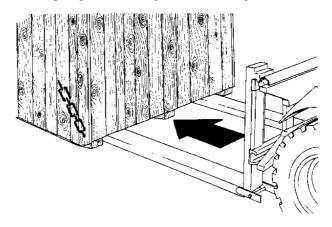
1.2 Lagerung

In folgenden Situationen:

- Installation nicht sofort nach Lieferung.
- Deinstallation und Lagerung bis zu einer Neuaufstellung.

Das Gerät an einem überdachten und vor Witterungseinflüssen und vor Staub geschützten Raum abstellen. Folgende Raumbedingungen sind im Lagerbereich zulässig:

Temperatur: $-25 \div + 75$ °C Relative Luftfeuchtigkeit: $30 \div 90$ % max.



Für die Installation des Batterieschranks, der eventuell mit der USV mitgeliefert wird, aufmerksam die Anleitungen aus dem entsprechenden Handbuch befolgen.

Die Liste des gelieferten Materials kann je nach Auftrags-Spezifikation unterschiedlich sein. Grundsätzlich muss die Verpackung folgendes enthalten: Das vorliegende Handbuch, die Einbauzeichnung, die Garantie, eventuelles zum Lieferumfang gehörendes Zubehör.

1.3 Handling

Der Transport und das Umstellen des Gerätes muss von entsprechend ausgebildetem Personal vorgenommen werden. Das Abladen vom Transportfahrzeug und das Aufstellen am Installationsort kann durch Anheben der Kiste bzw. der Holzpalette, auf der das Gerät befestigt ist, erfolgen. Für die endgültige Aufstellung wird eine Transportpallette oder ein Gabelstapler gemäß der folgenden Anleitungen verwendet.

- Die Gabeln des Gabelstaplers, von vorne oder hinten, unter die Unterseite des Gerätes einschieben. Dabei sicherstellen, dass sie auf der anderen Seite um ungefähr 30 cm überstehen. Wird eine Transportpallette verwendet, darf das Gerät nur soweit wie nötig angehoben werden.
- 2 Das Gerät an der Transportpallette oder am Gabelstapler befestigen und umstellen.

Umkipp-Gefahr

Um Umkipp-Gefahren zu vermeiden, vorm Umstellen des Gerätes sicherstellen, dass das Gerät fest mit geeigneten Seilen an der Transportpallette oder am Gabelstapler befestigt ist.

Bei den Arbeiten beachten, dass sorgfältig mit dem Schrank umgegangen wird. Eventuelle Stöße oder Runterfallen können den Schrank beschädigen. Nach dem Aufstellen vorsichtig die Verpackung entfernen, um Kratzer am Gerät zu vermeiden.

Zum Entfernen der Verpackung wie folgt vorgehen:

- 1. Die Verpackungsbandeisen durchschneiden.
- 2. Die Kartonverpackung vorsichtig nach oben abziehen.
- 3. Die Befestigungsschrauben des Schranks an der Holzunterlage entfernen.
- 4. Wird eine Transportpallette benutzt, muss das Gerät von der Palette genommen und auf den Boden gestellt werden. Dabei die gleichen Vorsichtsmaßnahmen wie für das Handling beachten.

2. Installationsumgebung

Die USV und der Batterieschrank sind für Innen-Installationen entwickelt worden. Bei der Auswahl des Installationsraums müssen folgende Punkte berücksichtigt werden:

2.1 Umgebungsbedingungen:

- Prüfen, dass der Boden eben ist, und dass er in der Lage ist das Gewicht der USV und des eventuellen Batterieschranks zu tragen.
- Staubig Räume sind zu vermeiden.
- Zu enge Räume sind zu vermeiden, da sie normale Wartungsarbeiten behindern können.
- Einen Aufstellungsort mit direkter Sonnen- oder Warmlufteinstrahlung vermeiden.
- Prüfen, dass die Raumtemperatur bei funktionierender USV folgenden Werten entspricht:
 - *Mindest-Betriebstemperatur:*

0 °C

• Höchsttemperatur für 8 Stunden pro Tag:

+ 40°C

• Durchschnittstemperatur für 24 Stunden:

+ 35°C

• max. relative Luftfeuchtigkeit:

90 % (ohne Kondenswasser)

• max. Installationshöhe

1.000 m bei Nominalleistung

(-1% Leistung für jede 100 m über 1.000 m)max. 4.000 m

2.2 Raum-Abmessungen

Für die mechanischen Abmessungen der Schränke siehe die "*EINBAUZEICHNUNG*", die zusammen mit der USV und dem Batterieschrank (falls vorhanden) geliefert werden. Diese Zeichnungen enthalten folgende Angaben:

- Die Position der Bohrungen am Sockel f
 ür die eventuelle Befestigung des Ger
 ätes am Boden.
- Grundriss der Auflage am Boden für die Bemessung einer eventuellen Struktur zum Anheben des Schranks.
- Die Position des Kabeleingangs.
- Die Position der Kühlgebläse am Dach der USV für die Positionierung einer eventuellen Struktur zum Ableiten der aus dem Gerät ausgestoßenen Warmluft nach außen.
- Der Querschnitt der Kabel am Eingang, Ausgang und der Batterie.
- Die Geräte-Verlustleistung (kW).

2.3 Raum-Kühlung

Anmerkung: Die empfohlene USV- und Batterie-Betriebstemperatur liegt zwischen 20° und 25°C. Die

Lebensdauer der Batterie ist temperaturabhängig. Erhöht sich die

Betriebstemperatur <u>von 20°C auf 30°C, halbiert sich die Lebensdauer der</u> Batterien.

Um die Temperatur im Installationsraum innerhalb eines Bereiches von 20÷25°C zu halten, muss ein System zum Entsorgen der Verlustwärme vorgesehen werden.

Die für den richtigen Betrieb der USV benötigte Wärmeableitung erfolgt sowohl durch den Luftstrom der Kühlgebläse in der USV (Zwangskonvektion) als auch durch die Wirkung der Luft, die an den Seitenpaneelen vorbeistreicht (Eigenkonvektion).

Um diese Luftzirkulation zu ermöglichen, d. h. den richtigen Betrieb der USV sicherzustellen, müssen bei der Installation alle Maßnahmen getroffen werden, um die Luftzirkulation nicht zu behindern, im einzelnen:

- Es muss ein Deckenabstand von mindestens 60 cm sichergestellt sein, um den Luftabzug nicht zu behindern.
- Vor dem Gerät muss ein Freiraum von mindestens einem Meter gelassen werden, um sowohl die Luftzirkulation als auch die Installations- und Wartungsarbeiten sicherzustellen.
- Bei der Eigenkonvektion wird die thermische Last über die Schrankwände nach außen abgeleitet. Ein direkt an einer Wand oder in einer Nische aufgestellter Schrank leitet weniger Wärme ab als ein in einem freien Raum aufgestellter Schrank.

Aus diesem Grund muss folgende Regel beachtet werden:

Mindestens eine der drei Seitenwände frei lassen: rechts, links, hinten.

• Bei Installationen, bei denen nebeneinander aufgestellte Schränke vorgesehen sind, dürfen die seitlichen Sockel nicht montiert werden.

2.4 Luftaustausch für Batterieraum

Für den Raum, in dem der Batterieschrank aufgestellt ist, muss eine Luftzirkulation vorgesehen werden, um die Konzentration des Wasserstoffs, der sich beim Laden der Batterien bildet, unterhalb der Gefahrenschwelle zu halten.

Der Luftaustausch im Raum sollte möglichst durch Eigenlüftung sichergestellt werden. Ist dies nicht möglich, muss eine Zwangslüftung vorgesehen werden.

In der Norm EN 50272-2 ist für den Luftaustausch vorgesehen, dass die Mindestöffnung folgendem Verhältnis entsprechen muss:

$A = 28 \times Q = 28 \times 0.05 \times n \times Igas \times C10 (1/10^3) [cm^2]$

A = Freie Öffnungsfläche für den Luft-Eintritt und Austritt

Q = Durchsatz der zu entfernenden Luft [m³/h]

n = Anzahl Batterieelemente

C10 = Batterieleistung in 10 Stunden [Ah]

Igas = gasentwickelnder Strom [mA/Ah]

gemäß der Norm: Igas = 1 Batterie Typ VRLA (*) [ventilgesteuerte Blei-Säure-Batterie]

(*) für Batterien offener Bauart, oder mit Nickel-Cadmium muss beim Hersteller nachgefragt werden.

Wird das Verhältnis für 240 Batterieelemente (40 x 6 elemente) Blei-Batterien
Bei einem Einsatz von 120Ah-Batterien muss die Mindestöffnung wie folgt sein: $A = 336 \times C10 / 10^3 \text{ [cm}^2]$ $A = 41 \text{ [cm}^2]$

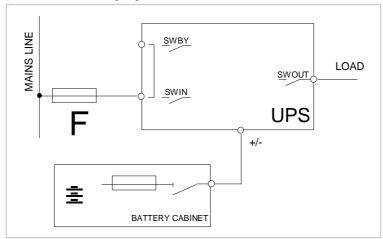
wo:

Die Öffnungen für den Luft-Eintritt und Austritt müssen so angebracht sein, dass die beste Luftzirkulation erzeugt wird, zum Beispiel:

- Öffnungen an gegenüber liegenden Wänden
- Mit einem Mindestabstand von 2 Metern, wenn sie sich an der gleichen Wand befinden.

3. USV in Einzelkonfiguration

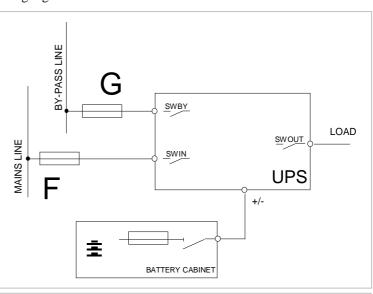
3.1 Vorbereitung der elektrischen Anlage


3.1.1 Eingang

Am Eingang der USV muss ein Überstrom-Schutz sowohl für den Leitungsabschnitt zur Verteilertafel als auch für die beiden Leitungszweige am Eingang zur USV vorgesehen werden: Gleichrichter-Leitung, Bypass-Leitung. Für die Bemessung der Schutzvorrichtung müssen zwei unterschiedliche Fälle berücksichtig werden:

a)Einzelne Versorgungsleitung

b)Getrennte Haupt- und By-Pass-Stromversorgung

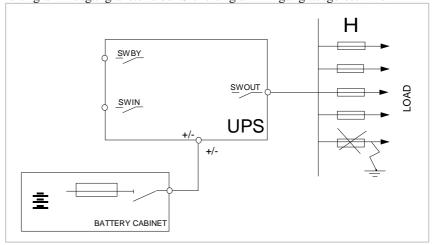

a) Einzelne Versorgungsleitung Die mit dem Buchstaben F gekennzeichnete Sicherung übt die drei oben erwähnten Schutzfunktionen aus.

	300	400	500	600
Einzelne Versorgungsleitung				
Imax (Last 100%, Nenneingangsspannung, Batterie in Ladung)		635	794	953
Externe Sicherung [G] Typ gG [A]	630	800	1000	1200

b) Getrennte Haupt- und By-Pass-Stromversorgung.

Sind zwei getrennte Stromversorgungen vorhanden, Haupt- und By-Pass-Stromversorgung, müssen zwei Sicherungen vorgesehen werden (im Plan b mit **F** und **G** gekennzeichnet). Jeweils eine für jede vorhandene Stromversorgungsleitung.

		300	400	500	600
Stromversorgungsleitung					
Imax (Last 100%, Nenneingangsspannung, Batterie	in Ladung)	476	635	794	953
Externe Sicherung [G] Typ gG	[A]	630	800	1000	1200
Bypass (*)					
Strom		433	578	722	867
Externe Sicherung [G] Typ gG	[A]	500	630	800	1000


^(*) In der USV, an der Bypass-Leitung, ist kein Überstrom-Schutz vorgesehen. Diese Sicherung muss in der Anlage vorgesehen werden.

3.1.2 Selektivität

Die Anlage, in die die USV eingebunden ist, muss so hergestellt sein, dass bei einem Kurzschluss an einer der beiden Leitungen hinter der USV die Sicherung am Ausgang anstelle der Sicherung am Eingang ausgelöst wird

(in diesem Fall wird von Selektivität gesprochen). Auf diese Weise wird für die anderen abgehenden Leitungen die Stromversorgung aufrecht erhalten.

Für die Auswahl der richtigen, hinter der USV einzusetzenden, Sicherungen müssen die zwei Betriebsarten berücksichtigt werden. <u>Netz-Stromversorgung</u> und <u>Batterie-Stromversorgung</u>.

Bei <u>Netz-Stromversorgung</u> muss die Sicherung am Ausgang selektiv mit der Sicherung am Eingang sein. Dieser Zustand ist mit folgenden Werten überprüft:

	[kVA]	300	400	500	600
Ausgangs-Nennstrom:	[A]	433	578	722	867
Am USV-Eingang verwendete Sicherung Typ gG		500	620	800	1000
(wie in der <i>Anschluss-Tabelle</i> angegeben)	[A]	500	630	800	1000
Überstrom-Sicherung am USV-Ausgang für Selektivität					
Kalibrierung der Sicherung, wenn Typ gG	[A]	315	400	500	630
Kalibrierung der Sicherung, wenn Typ aM	[A]	200	250	315	400

Soll die USV mit Nennlast genutzt werden, und werden Sicherungen des Typs gG verwendet, werden mindestens zwei abgehende Leitungen benötigt.

Bei <u>Batterie-Stromversorgung</u> (erste Störung) und einem Kurzschluss an einem der Ausgänge (zweite Störung) muss die Sicherung ausgelöst werden, bevor sich der Wechselrichter abschaltet.

Handelt es sich um einen Dreiphasen-Kurzschluss kann der Wechselrichter für 1 Sekunde einen Strom von 1,8-fachem Ausgangs-Nennstrom der USV abgeben (bei einem Einphasen-Kurzschluss den 3-fachen Nennstrom). Bei Annahme des schlimmsten Falls, d. h. Dreiphasen-Kurzschluss, also einen geringeren Strom. Dieser Zustand ist mit folgenden Werten überprüft:

	[kVA]	300	400	500	600
Ausgangs-Nennstrom:	[A]	433	578	722	867
Kurzschluss-Strom (dreiphasig) 1,8-facher Ausgangs-Nennstrom für 1 Sekunde			ınde		
Überstrom-Sicherung am USV-Ausgang für Selektivität					
Kalibrierung der Sicherung, wenn Typ gG [A] 125 125 160 200		200			
Kalibrierung der Sicherung, wenn Typ aM [A] 80 100 125 160					

Soll die USV mit Nennlast genutzt werden, und werden Sicherungen des Typs gG verwendet, werden mindestens fünf abgehende Leitungen benötigt.

Zusammenfassend: Bei einem Kurzschluss am Ausgang, und wenn nur die vom Kurzschluss betroffene Leitung getrennt werden soll, gibt es, wenn das Beispiel mit 300kVA berücksichtigt wird, zwei Möglichkeiten:

Komplette Selektivität sowohl bei <u>Netz-Stromversorgung</u> als auch bei <u>Batterie-Stromversorgung</u> Die Last muss auf mindestens fünf abgehende Leitungen verteilt werden, die jeweils auf 20% der Nennleistung ausgelegt sind.

Teilweise Selektivität nur bei Netz-Stromversorgung.

Da es als unwahrscheinlich angesehen wird, dass auf der ersten Störung innerhalb der begrenzten Dauer des Batteriebetriebs eine zweite Störung auftritt, reicht es aus, wenn der Ausgang auf zwei Leitungen verteilt wird, die jeweils auf 50% der Nennleistung ausgelegt sind.

3.1.3 Batterie

Batterieschrank

Um an die USV angeschlossen werden zu können, muss der Batterieschrank mit einem Überstrom-Schutz und einer Trennvorrichtung ausgestattet sein.

Der Trennschalter kann nur geschlossen werden, wenn die USV richtig gestartet worden ist. Siehe den Absatz "Einschaltverfahren" auf Seite 26.

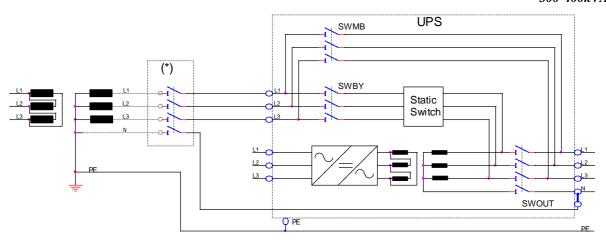
Die Sicherungen haben die Aufgabe die Batterien und die Kabel vor einem Kurzschluss zwischen dem Batterieschrank und der USV zu schützen. Für ihre Bemessung müssen folgende Regeln beachtet werden:

- Wenn Schnellsicherungen des Typs gl/gG installiert werden: Die maximale Stärke der zu verwendenden Sicherung ist gleich 2-facher Batterie-Amperestundenleistung.
- Wenn Ultraschnellsicherungen des Typs aR installiert werden: Die maximale Stärke der zu verwendenden Sicherung ist gleich 2,5-facher Batterie-Amperestundenleistung.

Zum Beispiel: Batterie Typ 150Ah – es können folgende Sicherungen verwendet werden: 315A Typ gl/gG oder 355A Typ aR.

Für die Auswahl der BATTERIESCHRANK Kabel für USV siehe in der Bedienungs- und Wartungsanleitung die "EINBAUZEICHNUNG".

	[kVA]	300	400	500	600
batteria					
Batterie-Dauerstrom	[A]	675	900	1150	1300

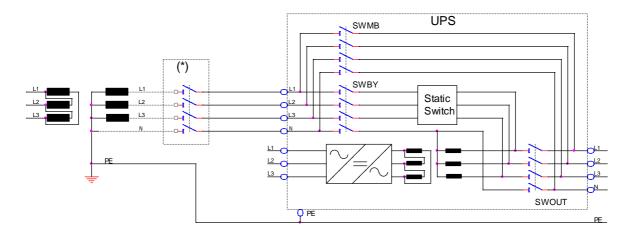

3.1.1 Neutralleiter

Den Ausgangsneutralleiter nicht mit der Erdung verbinden.

Sollte ein Trenntransformator in der Bypassleitung gefordert sein, sind an den nachgeschalteten Gerätschaften der USV besondere Modifikationen nötig.

300-400kVA

In Normalbetrieb sind SWBY und SWOUT geschlossen. Das Öffnen des SWBY beeinflusst nicht das Potential des Ausgangsneutralleiters.


300-400kVA

Die Funktion des Neutralleiters ist nicht abhängig von der Schalterstellung des Bypassschalters.

pag. 14 / 58

In Normalbetrieb sind SWBY und SWOUT geschlossen. Das Öffnen des SWBY beeinflusst das Potential des Ausgangsneutralleiters.

500-600kVA

Die Funktion des Neutralleiters ist abhängig von der Schalterstellung des Bypassschalters.

Anmerkung (*): Den Aufkleber anbringen (der folgende Aufkleber, wird mit der USV geliefert, muss an allen Schalteinheiten vorgeschalteter Systeme zur USV angebracht werden):

Vor dem Arbeiten an diesem Stromkreis

Unterbrechungsfreie Stromversorgung (USV) trennen Anschlüsse inklusive des Schutzleiters auf gefährliche Spannung prüfen

Gefahr durch Stromschlag

3.1.2 Differenzial

Werden als Stromschlag-Schutz an der USV Differenzstrom-Schutzvorrichtungen für die Anlage eingesetzt (Fehlerstrom-Schutzschalter), müssen diese folgende Merkmale haben:

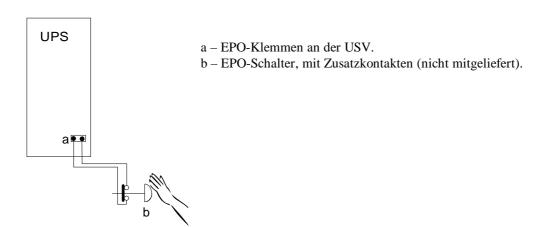
- Mindest-Differenzstrom 300mA
- Ansprechend auf Gleichstrom und einfachgerichtete Bauteile (Klasse B)
- Gesichert gegen Fehlauslösungen.
- Verzögerung größer oder gleich 0,1 Sek.

Bei Betrieb mit anliegender Netzspannung wird ein am Eingang angebrachter Fehlerstrom-Schutzschalter ausgelöst, weil der Ausgangskreis nicht gegen den Eingangskreis isoliert ist. Bei Betrieb ohne anliegende Netzspannung (Batterie-Stromversorgung) ist ein Auslösen des Fehlerstrom-Schutzschalters nur dann sichergestellt, wenn dieser wegen des Fehlerstroms ausgelöst werden kann, ohne dass Spannung an den Kabeln anliegt (z. B., ein Fehlerstrom-Schutzschalter mit Zusatzrelais funktioniert nicht).

Es ist auf jeden Fall möglich weitere Fehlerstrom-Schutzschalter am Ausgang einzusetzen, die möglichst mit den Fehlerstrom-Schutzschaltern am Eingang koordiniert sein sollten.

3.1.3 Schutz gegen Spannungs-Rückspeisung

Die USV ist mit einer Schutzvorrichtung ausgestattet, die nach einer internen Störung eine Spannungs-Rückspeisung in Richtung Eingangsleitung verhindert.


Die Schutzvorrichtung schaltet den Wechselrichter im Fall einer Störung ab, die eine falsche Strom-Übergabe und damit eine Spannungs-Rückspeisung auf die Bypass-Leitung während des Betriebs über den Wechselrichter verursachen könnte. Tritt die Störung bei USV in Batteriebetrieb auf, bleibt die Last nicht versorgt.

Soll ein Abschalten des Wechselrichters vermieden werden, d. h. die Last auch bei einer doppelten Störung über den Wechselrichter versorgt werden, kann die Anlage kundenspezifisch gestaltet werden, so dass - durch Umprogrammierung eines Relais an der Karte "ALARME UND FERNSTEUERUNGEN" - die Spule zum Öffnen eines vorgeschalteten Schalters angesteuert wird.

Die Kontrolllogik gestattet die Neukonfiguration der Relaisfunktion, z. B. für einen Rückspeisungs-Alarm, und die Nutzung eines spannungsfreien Kontakts für das Ansteuern zum Auslösen eines Schalters am USV-Eingang.

3.1.4 Vorrichtung für Notabschaltung (EPO)

Die USV ist, gemäß den Vorschriften aus 62040-1, zum Anschluss an eine Fern-Notabschaltvorrichtung vorgesehen. Die Betätigung dieser Fernschaltvorrichtung, die nicht mit dem Gerät mitgeliefert wird, führt zu einer Spannungsunterbrechung am Ausgang des Wechselrichters.
Nachstehend wird die Anschlussmodalität beschrieben.

Die Taste muss mit einem Zusatzkontakt ausgestattet sein. An der USV muss die Überbrückung an den EPO-Klemmen entfernt werden. Anstelle der Brücke müssen die vom Zusatzkontakt der Taste kommenden Kabel angeschlossen werden.

Bei Taste in Ruhestellung muss der Kontakt geschlossen sein. Sobald die Taste gedrückt wird, muss sich der Kontakt öffnen.

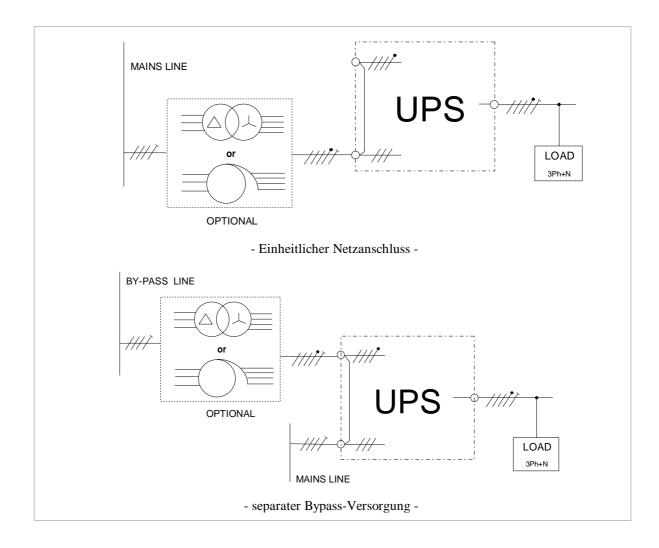
3.2 Anschlüsse an Netz, Last und Batterie

Die in diesem Kapitel beschriebenen Arbeiten dürfen ausschließlich von einem *Fachtechniker* ausgeführt werden. Der erste Anschluss, der ausgeführt werden muss, ist der Anschluss der Erdungsleitung.

DIE USV DARF NICHT OHNE ERDUNG BETRIEBEN WERDEN.

Bevor mit dem Anschließen begonnen wird, müssen alle Maschinen-Schalter geöffnet und geprüft werden, dass die USV vollständig von allen Versorgungsquellen getrennt ist: Batterie und Wechselstrom-Versorgungsleitung. Im Einzelnen muss geprüft werden:

- Die Eingangsleitungen zur USV müssen vollständig getrennt sein.
- Der Trennschalter/ Sicherung des Batterieschranks (falls vorhanden) muss geöffnet sein.
- Alle Trennschalter der USV: SWIN, SWBY, SWOUT und SWMB müssen auf geöffneter Position stehen (Position 0).
- Durch Messen mit einem Multimeter prüfen, dass keine gefährlichen Spannungen am Klemmenbrett anliegen.

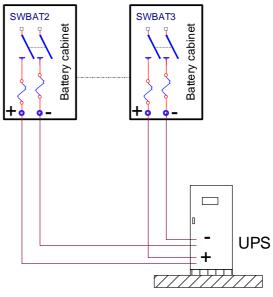

Für den Anschluss der Leistungs-Kabel an das Klemmenbrett siehe die Zeichnungen "EINBAUZEICHNUNG", die zusammen mit der USV und dem Batterieschrank (falls vorhanden) geliefert werden.

Nullleiter am Eingang

<u>Die Bypass-Leitung muss dreiphasig mit Nullleiter sein.</u> Die USV startet nicht ohne Neutralleiter im Bypasseingang.

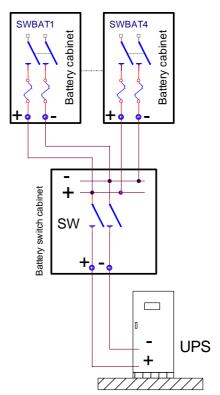
Der Transformator (Spartransformator) kann sowohl an der Haupt-Speiseleitung als auch an der Bypass-Leitung eingesetzt werden (siehe Angaben in den Zeichnungen).

BATTERIESCHRANK falls vorgesehen



Um an die USV angeschlossen werden zu können, muss der Batterieschrank mit einem Überstrom-Schutz und einer Trennvorrichtung ausgestattet sein.

Dieser Trennschalter <u>darf nur</u> geschlossen werden, wenn die USV regulär gestartet ist. Beim Anschließen an die USV <u>muss</u> der Trennschalter geöffnet bleiben.


max 3 battery cabinet

Entsprechend dem folgenden Schaltplan besteht die Möglichkeit bis zu 3 Batterieschränke in Parallelschaltung anzuschließen.

TRENNSCHALTERSCHRANK

Für Anlagen mit 3 oder mehr Batterieschränken (bis zu 5 Einheiten) muss ein Schrank mit Trennschalter vorgesehen werden, in dem der Parallelanschluss der Kabel vorgenommen wird (beim Verkaufs-Kundendienst nachfragen). Für die Bemessung der Kabel und die Anschlussarten siehe die "EINBAUZEICHNUNG", die dem Batterieschrank beiliegt.

Für Autonomiezeiten, für die eine größere Anzahl von Batterieschränken benötigt werden, fragen sie bitte bei den Verkaufbüros nach.

3.3 Anschluss von Signalen und Fernsteuerungen

3.3.1 Kabelstecker für EPO (Steuerungen Notabschaltung)

Wird die am Kabelstecker vorhandene Überbrückung geöffnet, wird die Spannung zum USV-Ausgang unterbrochen.

Fabrikseitig wird die USV mit überbrückten EPO-Klemmen ausgeliefert. Wird dieser Eingang verwendet, kann bei einer Notsituation über einen Fern-Überwachungsplatz durch einfachen Druck auf eine Taste die USV abgeschaltet werden.

Wird z. B. durch Öffnen des Schalters in der Schalttafel nur die Stromversorgung unterbrochen, wird die Last weiter durch Batteriebetrieb über die USV versorgt.

3.3.2 ALARME UND FERNSTEUERUNGEN

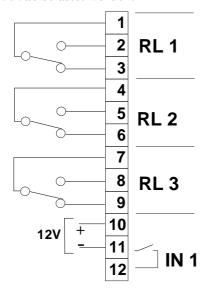
- Die Karte ist mit einer 12-poligen Klemme ausgestattet, mit:

STROMVERSORGUNG 1 Stromversorgung 12Vdc 80mA (max.) [Pin 10 und 11];

ALARME 3 spannungsfreie Wechselkontakte für Alarme;

STEUERUNG 1 über das Bedienfeld programmierbare Steuerung [Pin 11 und 12];

Die Funktion der drei Wechselkontakte und der Steuerung können über das Display-Bedienfeld neu programmiert werden. Fabrikseitig sind die ALARME und die STEUERUNG wie folgt eingestellt:


- ALARME

- RL1	Bypass/ Störung, der Kontakt wechselt die Position, wenn die USV die Last auf die Bypass-Leitung übergibt, sowohl bei Normalbetrieb (z. B. bei Überlast) als auch nach einer Störung der Wechselrichter-Stufe;
- RL2	Batterie fast entladen, der Kontakt wechselt die Position, wenn bei einem Ausfall des Versorgungsnetzes die Last über die Batterie versorgt wird.
- RL3	Ende Batterie-Entladung, der Kontakt wechselt die Position, wenn bei einem Ausfall des Netzes die Rest-Entladungszeit der Batterie den eingegebenen Mindestwert erreicht hat. Nach Ablauf dieser Zeit, wird die Last nicht weiter versorgt (der Wert für den Voralarm für Ende Batterie-Entladung ist fabrikseitig auf 5 Minuten eingestellt).

- STEUERUNG

BIECERCIVE	
IN1	Wechselrichter OFF. Pin 11 und Pin 12 miteinander (für mindestens 2 Sekunden) verbinden.
	- In "NORMALBETRIEB", wenn die USV die Steuerung für WECHSELRICHTER OFF erhält, schaltet sie die Last-Stromversorgung auf die BYPASS-Leitung (die Last ist nicht gegen einen Netzausfall geschützt).
	 In "NOTFALLBETRIEB", wenn die USV die Steuerung für STOP WECHSELRICHTER erhält, schaltet sie sich ab. Ist die Überbrückung vorhanden, bleibt die USV bei Rückkehr der Netzversorgung auf Bypass-Leitung umgeschaltet. Ist die Überbrückung nicht vorhanden, wird die USV in NORMALBETRIEB neu gestartet.

Die in der Abbildung gezeigte Position der Kontakte ist bei nicht vorhandenem Alarm. **Die Kontakte können mit** einem Strom von maximal 1A bei 250Vac belastet werden.

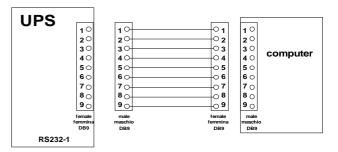
Für die Liste der Alarme und Steuerungen, die programmiert werden können, siehe ANHANG A: Eine Änderung der Funktion muss vom Kundendienst-Personal vorgenommen werden.

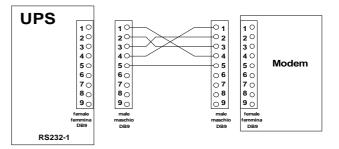
3.3.3 RS232

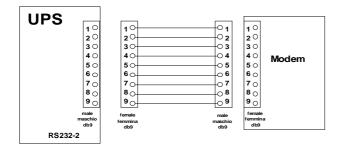
Es stehen 2 Kabelstecker DB9 für den Anschluss RS232 zur Verfügung. Fabrikseitig ist folgendes Datenübertragungs-Protokoll eingestellt:

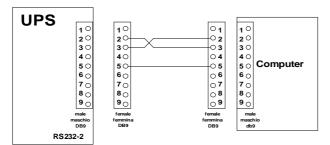
9600 Baud, -no parity, -8 bit, -1 bit di stop.

Die Datenübertragungs-Geschwindigkeit kann über das Menu


"KUNDENSPEZIFISCHE EINSTELLUNGEN" am BEDIENFELD von
1200 bis 9600 Baud geändert werden. Die entfernungsabhängigen
Richtwerte für die Datenübertragungs-Geschwindigkeit sind: 9600 Baud
50m, 4800 Baud 100m, 2400 Baud 200m, 1200 Baud 300m.


Für die Anschlussarten siehe die nachstehenden Pläne.




DB9 Buchse RS232-2

Für den Anschluss mit einem Computer ein RS232 Standardkabel verwenden. Für den Anschluss mit einem Modem siehe die Zeichnung.

DB9 Stecker RS232-1

-E- Für den Anschluss mit einem Modem ein Standardkabel verwenden.

Für den Anschluss mit einem Computer siehe die Zeichnung.

3.3.1 Parallelschaltung (optional)

Muss für den Anschluss der USV in Parallelschaltungs-Konfiguration verwendet werden. Siehe Kapitel "Modellversion Parallelschaltung" Kapitel 4.

3.3.2 SLOT 2-1, es können folgende Karten (optional) eingesetzt werden.

NetMan 102 Plus (an SLOT 1 main oder SLOT 2 aux)

Vorrichtung für die Verwaltung über das Ethernet der USV. Kann Informationen um Maschinen-Status mit unterschiedlichen Protokollen senden:

TCP/IP UDP (Kompatibilität mit

Watch&Save);

SNMP (für Datenaustausch mit NMS oder mit PowerNETGuard);

HTTP (für die Status-Anzeige in einem Browser);

TFTP (für die Konfiguration oder Aktualisierung der Vorrichtung, wenn diese am Netz angeschlossen ist).

Die Hauptfunktion ist die Einbindung der USV in das LAN-Netz. Dabei wird gleichzeitig eine hohe Zuverlässigkeit der Kommunikation mit dem Server sichergestellt und eine Verwaltung und Kontrolle der USV ermöglicht.

- MULTICOM Karte (an SLOT 1 main oder SLOT 2 aux)

Diese Vorrichtung kann für folgendes verwendet werden:

Bereitstellung eines zusätzlichen seriellen Anschlusses an der USV;

Überwachung der USV mit MODBUS/JBUS Protokoll an RS485 oder PROFIBUS (Multicom 401).

Anmerkung: Jede angeschlossene Karte sperrt die Nutzung eines RS232 Standard-Anschlusses. Es bestehen folgende Übereinstimmungen:

Die Verwendung von SLOT $\,2$ (aus) sperrt die Nutzung von RS232-2.

Um die komplette und aktualisierte Zubehörliste einzusehen, siehe die Internetseite www.riello-ups.com.

3.3.3 ALARM-FERNANZEIGE (2 optionale Karten)

6 Ausgänge: spannungsfreie Kontakte für Alarme (können über das Display-Bedienfeld programmiert werden), 2 Eingänge (können über das Display-Bedienfeld programmiert werden) und ein Zusatz-Eingang 12V DC maximal 100mA.

3.3.4 MULTI I/O (optional)

Ist ein Zubehör, das von der USV externe Signale (z. B.

Raumtemperatur, Batterieraumtemperatur usw.) über Relaiskontakte in Signale oder über seriellen Ausgang RS485 in MODBUS-Protokoll umwandelt.

Merkmale:

- 8 Eingänge (z. B. Feuchtigkeitssensoren, Rauchsensoren usw.).
- Kommunikation mit USV über seriellen Anschluss.
- 8 konfigurierbare Relais mit entsprechend vielen Ereignissen an der USV.
- RS232 Ausgang mit konfigurierbaren Meldungen.
- RS 485 Ausgang MDBUS /JUBUS mit konfigurierbaren Meldungen.

3.3.5 MODEM (optional)

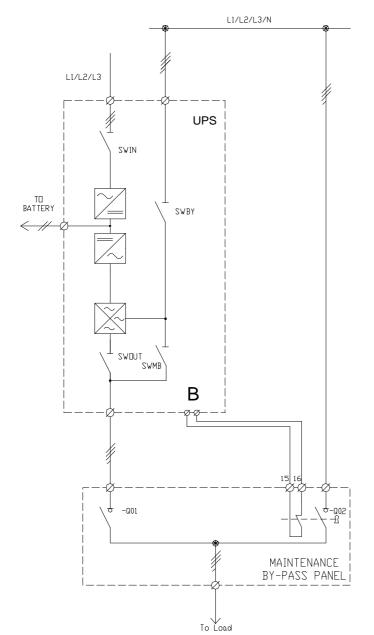
Mit den Kommunikations-Standards zwischen USV und mitgelieferter Software kompatibles Modell. Anmerkung: Das Modem muss an einen RS232 Anschluss (D und E) angeschlossen werden, es wird also die Nutzung eines RS232 Standard-Anschlusses gesperrt.

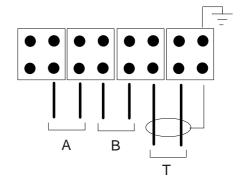
3.3.6 REMOTE SCHALTTAFEL (OPTIONAL)

Mit dieser Remote-Schaltafel kann die USV aus der Entfernung überwacht werden, was einen detaillierten Überblick über den Zustand der Anlage in Echtzeit ermöglicht. Durch diese Vorrichtung können die elektrischen Werte des Netzes, des Ausgangs, der Batterie, etc. kontrolliert und wenn notwendig Alarm gegeben werden.

Für Details bezüglich des Einsatzes und den Verbindungen das entsprechende Handbuch konsultieren.

3.3.7 Dual Bus System – UGS (optional)


Zwei unabhängige Systeme können als Dual Bus mit gemeinsamer oder getrennter Quelle konfiguriert werden. Die Synchronisierungs-Option (UGS) hält die Ausgänge der beiden Systeme, unabhängig von den Variationen am Eingang und wenn das System auf Batterie läuft, synchronisiert. Jedes System kann maximal bis aus 4 USV in Parallelschaltung bestehen. Dieses System ist für die Konfigurationen entwickelt worden, die statische Umschalter (*Static Transfer Switch - STS*) verwenden, weil es das Umschalten von einer USV-Quelle zu einer anderen ohne Störungen für die Lasten ermöglicht.


3.3.8 SWOUT und SWMB aux - Batterie-Temperatursensor (optional)

A = aux SWOUT ext

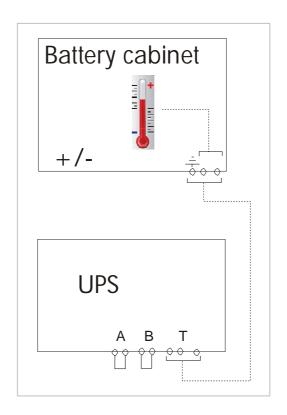
B = aux SWMB ext

T = Batterie-Temperatursensor ext

SWOUT e SWMB aux

A, B - Klemmen, die für den Anschluss der Zusatzkontakte an Schaltern in der USV-Anlage verwendet werden. Siehe auch den Absatz "Einbindung zusätzlicher Anlagen-Trennschalter".

Die Einbindung zusätzlicher Anlagen-Trennschalter in die USV ermöglicht den Austausch des gesamten Gerätes, ohne die Lasten-Stromversorgung zu unterbrechen


Q01 Zusätzlicher Trennschalter am Ausgang, Q02 Zusätzlicher Trennschalter für den externen Wartungs-Bypass.

Die Zusatzkontakte von Q02 müssen an die Klemmen B angeschlossen werden.

Der Kontakt von Q02 muss mit dem Schalter übereinstimmen, während S nicht übereinstimmen muss (Zusatzkontakt offen bei geschlossenem Schalter und umgekehrt bei offenem Schalter).

Batterie-Temperatursensor (optional)

Der Einsatz des Temperatursensors ermöglicht der Kontrolllogik der USV, abhängig von der Batterie-Betriebstemperatur, die Regulierung der Spannungswerte für Ladung und Beibehaltung

Es darf lediglich der vom Hersteller gelieferte Kit genutzt werden. Werden andere, nicht konforme Teile genutzt kann dies zu Störungen und Defekten der Anlage führen.

pag. 24 / 58 0MNMHTM30RUDEUB 00

Diese Seite wurde absichtlich leer gelassen

Netz-Stromversorgung

Zum Starten der USV muss die Netz-Stromversorgung vorhanden sein.

In dieser Phase werden alle Ausgangs-Klemmen der USV versorgt. Dementsprechend werden alle angeschlossenen Abnehmer mit Spannung versorgt. Vor dem Startverfahren müssen alle Anwender benachrichtig werden.

BATTERIESCHRANK falls vorgesehen

Um an die USV angeschlossen werden zu können, muss der Batterieschrank mit einem Überstrom-Schutz und einer Trennvorrichtung ausgestattet sein.

Dieser Trennschalter <u>darf nur</u> geschlossen werden, wenn die USV regulär gestartet ist. Beim Einschalten der USV <u>muss</u> der Trennschalter geöffnet bleiben.

Nach dem Anschluss der Kabel am EINGANG/ AUSGANG und der Batteriekabel an die Klemmen der USV, muss vorm Anbringen der Schalterabdeckung folgendes überprüft werden:

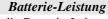
- Alle Klemmen am Eingang/ Ausgang müssen richtig festgezogen sein.
- In allen Sicherungshaltern müssen Sicherungen eingesetzt und geschlossen sein.
- Der Schutzleiter am Eingang und Ausgang muss richtig angeschlossen sein (gelb/grünes Erdungskabel).
- Die Polarität der Batterieanschlüsse überprüfen.

Die Schalterabdeckung wieder anbringen.

Bei erstmaligen Starten die folgenden Arbeitsschritte in der angegebenen Reihenfolge ausführen:

- 1 Den Trennschalter SWIN am Eingang schließen.
- **2** Zwei mal die Taste 1 drücken, die Sprache auswählen, anschließend die Taste 8 drücken, um auf das Hauptmenu zurückzustellen.
- Nach einem kurzen Moment werden auf der ersten Zeile des Display-Bedienfelds durchlaufend die Meldungen zum USV-Status angezeigt. Unter diesen auch die Meldung zum Status des Batterie-Trennschalters:

Warten: Die BATTERIE NICHT anschließen.


- 4 Den Trennschalter SWBY der Bypass-Leitung schließen.
- **5** Den Trennschalter SWOUT am Ausgang schließen.
- 6 Den Trennschalter des Batterieschranks nicht schließen.

Nach Abschluss der o. a. Arbeitsschritte hört man das Betriebsgeräusch der Kühlgebläse und den Ton des Summers.

Den Trennschalter oder die Sicherungen des Batterieschranks <u>erst dann</u> schließen, wenn an der ersten Zeile am Display-Bedienfeld <u>folgende Meldung nicht mehr angezeigt wird</u>:

Warten: Die BATTERIE NICHT anschließen.

Es ist wichtig, dass der richtige Wert für die Batterie-Leistung eingegeben wird. Dieser Wert wird nämlich von der System-Logik für die Berechnung der Autonomie verwendet.

Wenn nicht anderes eingegeben, wird dieser Wert gleich USV-Leistung übernommen. Z. B. ein 100kVA. Die Voreinstellung ist auf 100Ah eingestellt.

Siehe die "Anzeige- und Bedieneinheit Bedienungsanleitung" die zusammen mit der USV.

Nach Abschluss der Arbeitsschritte einen manuellen Batterie-Test vornehmen:

Die Taste 3 und anschließend die Taste 2 am Bedienfeld drücken. Am Ende des Tests, nach ungefähr 8 Sekunden, müssen, bei richtig gestarteter USV und angeschlossener Batterie, am Anzeige- und Bedienfeld die beiden grünen LED für Eingang und Ausgang ständig eingeschaltet sein.

SWMB

Während des Normalbetriebs der USV darf der Trennschalter SWMB nicht geschlossen sein. SWMB wird nur bei Wartungsarbeiten an der USV geschlossen, um die Last weiter zu versorgen (siehe die Anleitungen auf Seite 30).

pag. 26 / 58

Bei der Inbetriebnahme wird die USV im On-Line Betrieb gestartet (siehe Seite 28). Soll die Betriebsart Standbyon / Smart active eingegeben werden, siehe die Seiten 28 und 28.

Konfigurationen

Für eine andere Betriebsart bitte das Kundendienst-Personal benachrichtigen.

Bei installierter USV auf der ersten Zeile am Display-Bedienfeld kontrollieren, ob die Meldung NORMALER BETRIEB angezeigt wird. In der linken Ecke an der zweiten Zeile wird das USV-Modell mit folgender Codierung angezeigt:

X000YZZ

X USV-Modell 000 Ausgangsleistung [kVA] Y Ausgangsfrequenz:

> Y = Ausgang 50Hz Y = A Ausgang 60Hz

Z Konfigurations-ART

Z = Ausgangsfrequenz = Eingangsfrequenz

Z = _ C Frequenzwandler mit Batterie Z = KS Frequenzwandler ohne Batterie

Z = N Standby on Z = F Standby off Z = S Stabilisator

Z= P oder p Version Parallelschaltung

Z= B oder b Version Parallelschaltung mit einziger

Batterie

3.4.1 Kontrolle Batteriebetrieb

Diese Kontrolle ist nur auszuführen, wenn die Batterie vorhanden ist.

Nach der Installation kann ein Netzausfall simuliert werden, um auch nur für einen kurzen Moment den Betrieb zu prüfen (die Batterie könnte nicht geladen sein).

Bei USV in Normalbetrieb den Schalter SWIN am Eingang der USV (Gleichrichter) öffnen. Man hört sofort den Summer-Ton (mit 5= ON) während am Anzeige- und Bedienfeld die LED OUT (grünes LED) und BATT (gelbes LED) ständig eingeschaltet bleiben.

Prüfen, dass die an die USV angeschlossene Last versorgt wird. In dieser Situation ist die zur Last gelieferte Energie die gleiche, die vorher in den Batterien gespeichert wurde. Den Trennschalter SWIN wieder schließen, um wieder auf Normalbetrieb zurückzustellen. Am Bedienfeld sind jetzt das GRÜNE LED IN und das LED OUT wieder eingeschaltet.

Das Aufladen der Batterie erfolgt automatisch.

Autonomie der Batterie

Um einen Entladetest bei Batteriebetrieb auszuführen, muss einige Stunden gewartet werden (mindestens acht Stunden für Standard-Autonomie und länger bei Batterien, die für längere Autonomiezeiten ausgelegt sind), damit sich die Batterien laden können.

Bei der erstmaligen Entladung kann die Autonomiezeit etwas geringer als die erwartete Zeit sein. Es müssen einige Lade-/ Entlade-Zyklen ausgeführt werden, um diesen Wert zu verbessern. Die Batterieleistung ist im Laufe der Zeit kein konstanter Wert. Sie nimmt nach einigen Lade-/ Entlade-Zyklen zu, bleibt dann für einige Hundert Zyklen konstant, und nimmt dann definitiv ab.

3.5 Betriebsarten

Nachstehend werden die unterschiedlichen Betriebsarten für das Gerät beschrieben.

Einstellung

Die Betriebsmodalität wird bei der Installation der USV eingestellt. Sie kann auch nachträglich, aber nur durch einen *Fachtechniker*, geändert werden.

3.5.1 On - line - Fabrikseitige Einstellung -

Die Last wird immer über den Wechselrichter versorgt, bei einem Ausfall der Eingangs-Netzversorgung wird die Last weiter über den Wechselrichter, aber mit dem in den Batterie gespeicherten Strom versorgt.

On – line:

Die Last wird immer über den Wechselrichter mit stabilisierter Spannung und Frequenz versorgt. Es wird der Strom aus dem Versorgungsnetz (EINGANG) verwendet. Bei einer eventuellen Störung am EINGANG werden, mit Zeit Null, die Batterien ausgelöst, die den Wechselrichter mit Strom versorgen und dabei die Last-Stromversorgung beibehalten (für die Dauer der Batterie-Autonomie). Bei der Rückkehr der Netz-Stromversorgung am EINGANG werden die Batterien automatisch wieder über den Gleichrichter aufgeladen.

3.5.2 Standby-on / Smart active

Die Last wird über das Stromnetz versorgt, bei einem Ausfall der Eingangs-Netzversorgung wird die Last über den Wechselrichter versorgt, dafür wird der in den Batterien gespeicherte Strom verwendet.

In <u>Standby On</u> oder <u>smart active</u> wird die Last über die Bypass-Leitung versorgt (wenn die Werte der Speiseleitung im Akzeptanzbereich liegen). Bei einer Störung an der Speiseleitung wird die Last an den, mit Batteriestrom versorgten, Wechselrichter übergeben.

Standby On:

Die Übergabe vom Wechselrichter auf die Bypass-Leitung erfolgt direkt (eingegebene Zeit = 0) oder verzögert (Höchstwert 180 Minuten). Damit die Übergabe stattfindet muss die Bypass-Leitung für die eingegebene Zeit innerhalb der Akzeptanzwerte bleiben. Im ART *Standby On* bleibt der Gleichrichter versorgt und hält die Batterien geladen. Verlassen die Spannung oder die Frequenz der Bypass-Leitung den Bereich der Akzeptanzwerte, wird die Last automatisch auf den Wechselrichter-Ausgang umgeschaltet. Der Betrieb in *Standby On* ermöglicht eine Reduzierung des Anlagen-Energieverlustes (erhebliche Einsparung). Bevor diese Funktion genutzt wird, muss geprüft werden, ob die Last im Fall eines Netzausfalls eine Unterbrechung der Stromversorgung von ungefähr 2÷5 ms akzeptiert und eventuelle Netzstörungen aushält.

Normalerweise wird dieser BetriebsART nur für wenig empfindliche Lasten genutzt. Auf der zweiten Zeile im HAUPTMENU, in der Nähe der Anzeige des USV-Modells, wird der Buchstabe N angezeigt.

Smart Active:

Abhängig von der Qualität der Stromversorgung, aktiviert die USV von alleine den BetriebsART <u>On-Line</u> oder <u>Standby-On</u> (siehe Menu "KUNDENSPEZIFISCHE EINSTELLUNG BETRIEBSART SMART ACTIVE"). Bei der Aktivierung des BetriebsART Smart Active wird die Stromversorgung für einen Zeitraum von einigen Minuten überwacht. Nach Ablauf dieses Zeitraums, und wenn der Spannungswert innerhalb der vorgegebenen Werte geblieben ist, wird der Ausgang auf die Bypass-Leitung umgeschaltet. Andernfalls bleibt die Last weiter über den Wechselrichter versorgt, während die Überwachungszeit auf ungefähr eine Stunde verlängert wird. Nach Ablauf dieses Zeitraums ohne Störungen, wird die Last auf die Bypass-Leitung übergeben. Andernfalls wird von der Logik für eine weitere Stunde überwacht. Der Vorteil bei Verwendung dieses Betriebs-ART ist ein Wirkungsgrad von mehr als 98%.

Auf der ersten Zeile im HAUPTMENU wird SMARTA angezeigt. Auf der zweiten Zeile im HAUPTMENU, in der Nähe der Anzeige des USV-Modells, wird der Buchstabe M angezeigt.

3.5.3 Standby-off (bei vorhandenem Netz wird die Last nicht versorgt)

Die Last wird nicht versorgt, bei einem Ausfall der Eingangs-Netzversorgung wird die Last über den Wechselrichter versorgt, dafür wird der in den Batterien gespeicherte Strom verwendet.

Standby-Off:

Ist Netz-Stromversorgung vorhanden, wird der USV-Ausgang nicht benutzt. Der GLEICHRICHTER bleibt eingeschaltet und hält die Batterien geladen. Die Ausgangsspannung liegt nur dann an, wenn die Netz-Stromversorgung ausfällt. Die Anlage bleibt mit einer Ausgangsspannung = 0V solange Eingangs-Spannung und Frequenz innerhalb des Akzeptanzbereiches bleiben. Bei Rückkehr der Speiseleitung stellt sich die USV automatisch auf den BetriebsART <u>Standby-Off</u> zurück.

Auf der zweiten Zeile im HAUPTMENU, in der Nähe der Anzeige des USV-Modells, wird der Buchstabe ${\pmb F}$ angezeigt.

3.5.4 Stabilisator (Betrieb im BetriebsART On-line ohne Batterie)

Die Last wird über den Wechselrichter versorgt, bei einem Ausfall der Netzversorgung wird die Last nicht versorgt, Batterien sind nicht vorhanden.

Stabilisator:

Die Last wird immer über den Wechselrichter mit stabilisierter Spannung und Frequenz versorgt. Es wird der Strom aus dem Eingangs-Versorgungsnetz verwendet. Batterien sind nicht vorhanden: Bei einem Ausfall der Eingangs-Netzversorgung wird der Ausgang des STABILISATORS nicht versorgt.

Auf der zweiten Zeile im HAUPTMENU, in der Nähe der Anzeige des USV-Modells, wird der Buchstabe S angezeigt.

3.5.5 Frequenzwandler (von 50 auf 60Hz oder umgekehrt)

Die Last wird über den Wechselrichter mit einer anderen Ausgangsfrequenz als der Eingangsfrequenz versorgt, bei einem Ausfall der Eingangs-Netzversorgung kann die Last weiter über den Wechselrichter, mit dem in den Batterien (falls vorhanden) gespeicherten Strom versorgt werden.

Frequenzwandler:

NETZ vorhanden, Last versorgt. Die Last wird immer über den Wechselrichter mit stabilisierter Spannung und Frequenz versorgt. Es wird der Strom aus dem Eingangs-Versorgungsnetz verwendet. Die Bypass-Leitung ist deaktiviert und darf nicht angeschlossen werden (es müssen die Verbindungen zwischen der Hauptlinie und der Bypass-Linie an den Eingangsschienen entfernt werden).

Den Trennschalter SWMB <u>nicht verwenden</u>, wenn die USV als Frequenzwandler konfiguriert ist. ANMERKUNG: Um eine Betätigung des Trennschalters zu verhindern, muss er mit einem Vorhängeschloss gesichert werden.

3.6 Kundenspezifische Einstellungen

Über das Bedienfeld (aus dem Hauptmenu die Taste 3 und 5 drücken und den Zugangscode 436215 eingeben. Anschließend können innerhalb eines bestimmten Bereiches einige fabrikseitig eingestellte, elektrische Parameter geändert werden).

- Sprache;
- Wert der AUSGANGS-NENNSPANNUNG;
- BATTERIE-Parameter;
- Voralarm Ende Batterie-Entladung;
- Abschaltung für Leistung unterhalb eines eingegebenen Wertes (AUTO-OFF bei Leistung);
- Programmiertes tägliches Abschalten (AUTO-OFF Time);
- Spannungs- und Frequenz-Akzeptanzbereich an der BYPASS-Leitung;
- Frequenzbereich am Bypass;
- Konfiguration Modem;
- Anschlüsse RS232-1 und RS232-2;
- Betrieb mit Standby-On;
- Betrieb mit Smart active;
- Datum und Uhrzeit.

3.7 Verfahren zur Last-Übergabe von USV auf Wartungs-Bypass

Dieses Verfahren ist bei den Frequenzwandlern nicht anwendbar.

Bei mehreren, parallelgeschalteten USV das Verfahren befolgen, das im Absatz "Wartungs-Bypass" im Kapitel "Modellversion Parallelschaltung" beschrieben ist.

Nachstehend wird die Reihenfolge der Arbeitsschritte beschrieben, die ausgeführt werden müssen, um die USV auf Wartungs-Bypass zu stellen. Je nach Ausgangsstatus der USV unterscheiden sich die einzelnen Verfahren.

- USV in NORMALBETRIEB

<u>Verfahren a</u>) <u>Die Last unterliegt bei der Übergabe keinerlei Unterbrechung.</u>

- USV mit nicht mit der Bypass-Leitung synchronisiertem Ausgang.

<u>Verfahren b)</u> <u>Die Last unterliegt einer Unterbrechung der Stromversorgung.</u> (daher sollte dieser Vorgang nur dann ausgeführt werden, wenn es unbedingt erforderlich ist)

Verfahren a)

Die Bypass-Leitung ist vorhanden und sowohl in Bezug auf Frequenz als auf Spannung geeignet.

*Am USV-Display wird NORMALBETRIEB angezeigt.

- 1. Werden nacheinander, wie am Display angegeben, die Tasten 3, 6, 4, 7, 2, 6, 3 gedrückt, wird die Steuerung Bypass mit Abschalten des Wechselrichters eingeschaltet;
- 2. Den Trennschalter SWMB schließen;
- 3. Alle Geräteschalter öffnen (SWIN, SWOUT,SWBY und die Trennschalter/ Sicherungen im Batterieschrank) und nur den Trennschalter SWMB (Leitung Wartungs-BYPASS) geschlossen halten. Das Bedienfeld bleibt ausgeschaltet.

ANMERKUNG: Nach dem Ausführen der oben angegebenen Arbeitsschritte muss das Fachpersonal vor Arbeiten im Gerät ungefähr 10 Minuten warten, bis sich die Kondensatoren entladen haben.

In dieser Situation (während der Wartungsarbeiten) wirkt sich eine eventuelle Störung (z. B. Stromausfall) an der Speiseleitung der USV auf die stromversorgten Geräte aus (die Batterien sind bei diesem Betriebszustand deaktiviert).

Verfahren b)

Die Bypass-Leitung ist außerhalb des Akzeptanzbereiches, am Display erscheint die Meldung:

FALSCHE BYPASS-SPANNUNG oder SWBY OFF

- 1) Alle Geräteschalter öffnen (SWIN, SWOUT, SWBY und die Trennschalter/ Sicherungen im Batterieschrank). Das Bedienfeld bleibt ausgeschaltet.
- **2)** Bevor der Schalter SWMB zum Anschluss der Lasten geschlossen wird, muss abgeschätzt werden, ob die Speiseleitung geeignet ist die angeschlossenen Lasten in Bezug auf Frequenz- und Spannungswert zu versorgen.

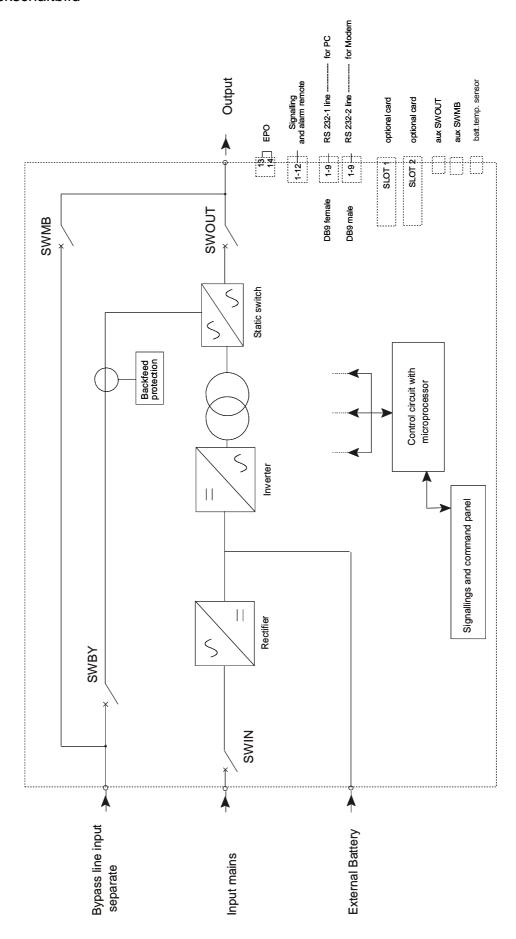
ANMERKUNG: Nach dem Ausführen der oben angegebenen Arbeitsschritte muss das Fachpersonal vor Arbeiten im Gerät ungefähr 10 Minuten warten, bis sich die Kondensatoren entladen haben.

Nach den Wartungsarbeiten die USV entsprechend der Angaben aus dem Absatz STARTVERFAHREN neu starten (siehe Seite 26), anschließend den Trennschalter SWMB öffnen (er war vorher geschlossen worden). Die USV nimmt den NORMALBETRIEB wieder auf.

3.8 Ausschalten der USV und der Last

Mit diesem Arbeitsschritt wird die am Ausgang angeschlossene Last ausgeschaltet. Bei den Modellversionen mit Parallelschaltung muss jeder Arbeitsschritt an allen USV vorgenommen werden:

Den Schalter der Last öffnen.


SWOUT öffnen, Trennschalter am Ausgang.

SWIN schließen, Trennschalter am Eingang.

SWBY öffnen, Trennschalter der Bypass-Leitung.

Den Schalter/ Sicherung am Batterieschrank öffnen.

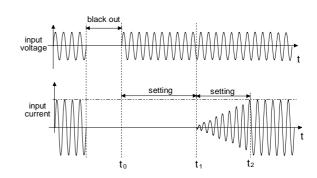
Die Last ist nicht mehr versorgt. Nach einigen Sekunden schaltet sich auch das Anzeigefeld aus. Durch Messen mit einem Multimeter prüfen, dass keine gefährlichen Spannungen mehr am Klemmenbrett anliegen. Zum Neustarten der USV die Anleitungen aus dem Absatz STARTVERFAHREN befolgen (siehe Seite 26).

3.10 Bauteile des Blockschaltbildes

Die MASTER HP besteht aus folgenden Komponenten:

GLEICHRICHTER mit IGBT

Er bildet die Eingangsstufe, er wandelt die Wechselspannung der Speiseleitung in Gleichspannung um.


Einschalten des Gleichrichters programmiert werden. Im Einzelnen kann folgendes eingegeben werden:
Die Start-Verzögerung, t0 –t1.
(damit ist ein nicht simultanes Anlaufen

Über das Display-Bedienfeld kann das

(damit ist ein nicht simultanes Anlaufen mehrerer am gleichen Netz angeschlossener USV möglich).

Die Start-Dauer, t1 - t2.

(damit kann eine übergroße Bemessung eines am USV-Eingang angebrachten Stromaggregats vermieden werden).

Der Gleichrichter hat folgende Funktionen:

- Den Wechselrichter mit Gleichspannung versorgen.
- Automatisch dafür sorgen, dass die Batterien geladen werden.
- Optimierung des Eingangs-Leistungsfaktors durch ein geeignetes automatisches Ladesystem.

Das System zum zyklischen Aufladen der Batterie sieht zwei Phasen vor:

Die erste Phase besteht im Aufladen der Batterie mit begrenztem Strom und steigender Spannung (bis zu einem vorgegebenen Ladewert "Vb_max). Diese Phase wird beibehalten, bis die volle Batterie-Ladung erreicht ist (Batt=100%Ah). Diese wird durch Messen des Batterie-Eingangsstroms erfasst.

In der zweiten Phase, bei vollständig geladener Batterie, wird die Batterie-Ladung deaktiviert, so dass jeglicher Reststrom zur Batterie auf Null gesetzt wird. Damit wird die Lebensdauer verlängert und die Voraussetzung geschaffen, dass der Gleichrichter den Leistungsfaktor am Eingang optimieren kann.

Das System führt außerdem täglich einen Zyklus aus, um den Ladezustand zu überprüfen und die normale Selbstentladung der Batterie auszugleichen.

BATTERIE

Die Batterie ist die Energiereserve für die Lastenversorgung, wenn die Stromversorgung am Eingang des USV ausgefallen ist. Sie befindet sich in einem oder mehreren zusätzlichen Schränken. Der Batterieschrank <u>muss</u> mit einer Trenn- und Schutzvorrichtung <u>ausgestattet sein</u> (Magnetthermischer Schutzschalter oder Trennschalter mit Sicherungen).

Die Last wird durch die in der Batterie gespeicherten Energie versorgt, wenn das Netz ausgefallen ist (Blackout) oder den Akzeptanzbereich verlassen hat (Frequenz oder Spannung). In dieser Betriebsphase wird die, von den am Ausgang der USV angeschlossenen Geräten benötigte, Energie durch die, vorher geladene, Batterie geliefert. Am alphanumerischen BEDIENFELD an der Fronseite der USV wird die Dauer der Rest-Autonomiezeit angezeigt. Diese wird anhand der abgegebenen Leistung und dem Ladezustand der Batterien berechnet. Der angezeigte Wert ist ein Richtwert, weil die von der Last angeforderte Energie sich während des Entladevorgangs ändern kann. Die Autonomiezeit kann verlängert werden, indem einige der angeschlossenen Geräte getrennt werden. Wird die Dauer der Rest-Autonomiezeit geringer als der für VORALARM AUTONOMIE-ENDE eingegeben Wert (fabrikseitige Einstellung 5 Minuten), erhöht der Summer seine Ton-Frequenz, das gelbe LED für die BATTERIE fängt an zu blinken. Unter diesen Bedingungen sollte die laufende Arbeit gesichert/ gespeichert werden. Nach Ablauf dieser Zeit unterbricht die USV die Last-Stromversorgung.

Bei Rückkehr der NETZ-Stromversorgung startet die USV automatisch und lädt die Batterien.

WECHSELRICHTER

Er bildet die Ausgangsstufe, er wandelt die vom GLEICHRICHTER oder der BATTERIE kommende Gleichspannung in sinusförmige stabilisierte Wechselspannung um. Der Ausgang des Wechselrichters ist gegen den Eingang und die Batterien durch einen galvanischen Trenn-Transformator isoliert. Der Wechselrichter ist immer in Betrieb, die an den USV-Ausgang angeschlossene Last wird immer über den Wechselrichter versorgt (bei NORMALBETRIEB).

STATISCHER UMSCHALTER

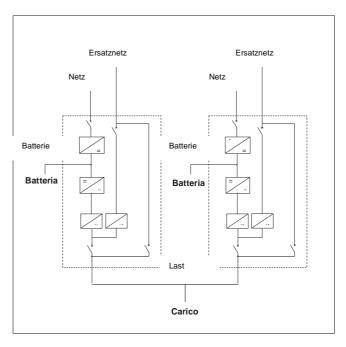
Diese Vorrichtung ermöglicht in Nullzeit eine synchronisierte, automatische oder manuelle Übergabe der Lasten-Stromversorgung von der geschützten Leitung (Ausgang WECHSELRICHTER) auf die ungeschützte Leitung (BYPASS-Leitung) und umgekehrt.

Die USV ist mit einer Schutzvorrichtung "*BACKFEED PROTECTION*" ausgestattet, die nach einer internen Störung eine Spannungs-Rückspeisung in Richtung Eingangsleitung verhindert.

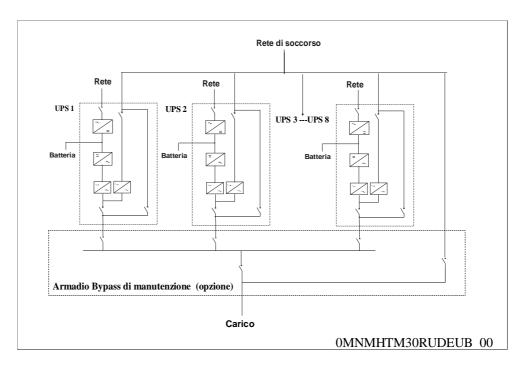
MANUELLER WARTUNGS-BYPASS (SWMB)

Wartungs-Trennschalter. Wird SWMB geschlossen und die anderen Trennschalter SWIN, SWBY, SWOUT geöffnet, wird die USV getrennt aber die Lasten-Stromversorgung am Ausgang aufrechterhalten. Dieser Arbeitsschritt wird benötigt, wenn Wartungsarbeiten im Gerät ausgeführt werden müssen, ohne dass dabei die Stromversorgung zu den Lasten unterbrochen werden darf.

Der Trennschalter ist für die Nennleistung der USV bemessen.


Diese Seite wurde absichtlich leer gelassen

4. Parallelsystem

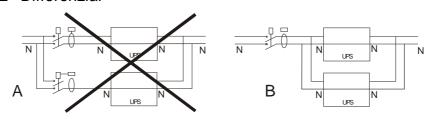

4.1 Einleitung

Die USV Anlagen können in Parallelschaltung betrieben werden, um sowohl die Zuverlässigkeit bei der Stromversorgung der Last als auch die am Ausgang zur Verfügung stehende Leistung zu erhöhen. Es können untereinander bis zu 8 Einheiten parallel geschaltet werden. Es sollten Einheiten mit der gleichen Leistung angeschlossen werden. Die Last, die an eine Anlage mit mehreren parallelgeschalteten Geräten angelegt werden kann, kann aufgrund der automatischen Leistungsverteilung höher sein, als die Last, die von einer einzelnen Einheit unterstützt werden kann. Eine Verbesserung der Zuverlässigkeit erhält man nur unter der Voraussetzung, dass die Anlagen-Gesamtleistung mit einer abgeschalteten Einheit höher als die erforderliche Leistung ist. Diese Voraussetzung wird immer durch das Hinzufügen einer redundanten Einheit erfüllt.

Die redundante Einheit wird mit einer USV mehr als die Mindestanzahl der für die Last-Stromversorgung benötigten Elemente hergestellt, so dass bei der

automatischen Abschaltung einer gestörten Einheit weiterhin die Stromversorgung korrekt erfolgen kann. Die in Parallelschaltung untereinander angeschlossenen USV werden über eine Karte koordiniert, die einen Informationsaustausch vornimmt. Die Informationen werden zwischen den USV über ein Kabel mit Ringanschluss ausgetauscht. Der Ringanschluss bietet eine Redundanz im Anschlusskabel (Kommunikation in den Kabeln zwischen den einzelnen Einheiten). Das ist die zuverlässigste Art, um die USV anzuschließen. Es ermöglich auch den "heißen" Einbau und Trennen einer USV. Jede USV hat einen eigenen Controller, der ständig mit der Gesamt-Anlage kommuniziert, so dass der Anlagen-Betrieb garantiert wird. In dem Kabel werden die Signale von einer "Master" USV zu den anderen "Slave" mit einem optisch isolierten System übertragen, so dass die Kontrollsystem untereinander elektrisch isoliert gehalten werden. Die Betriebslogik sieht vor, dass eine Einheit – die erste die angeschlossen wird – zur "Master" wird und die Kontrolle der anderen "Slave" übernimmt. Bei einer Störung an der "Master" Einheit wird die Kontrolle sofort an eine "Slave" übergeben, die damit zur "Master" wird. Das aktuelle sieht einen Basis-Betrieb vor, jede Einheit mit ihrer eigenen Batterie. Die Anlage kann (durch Eingabe eines Code am Display-Bedienfeld) mit allen Einheiten an eine einzige Batterie kundenspezifisch eingestellt werden.

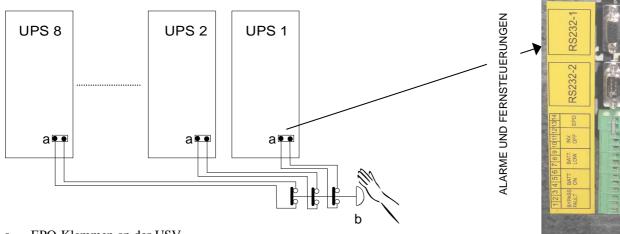
pag. 36 / 58


4.2 Vorbereitung der elektrischen Anlage

Alle im Kapitel enthaltenen Informationen zur Vorbereitung der elektrischen Anlage in Bezug auf die USV behalten auch mit den nachstehenden Ergänzungen ihre Gültigkeit.

4.2.1 Eingang

Es gelten die Angaben aus dem ersten Teil der Bedienungs- und Wartungsanleitung für einzelne USV. Jede Einheit muss mit Sicherungen oder gleichwertigen Schaltern geschützt werden

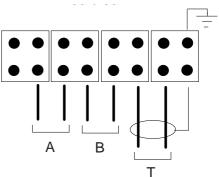

4.2.2 Differenzial

Um bei den Versionen mit mehreren parallelgeschalteten Geräten ein falsches Auslösen zu vermeiden, darf nur ein einzelner Fehlerstrom-Schutzschalter am Eingang der gesamten Anlage (siehe Abbildung B) eingebaut werden.

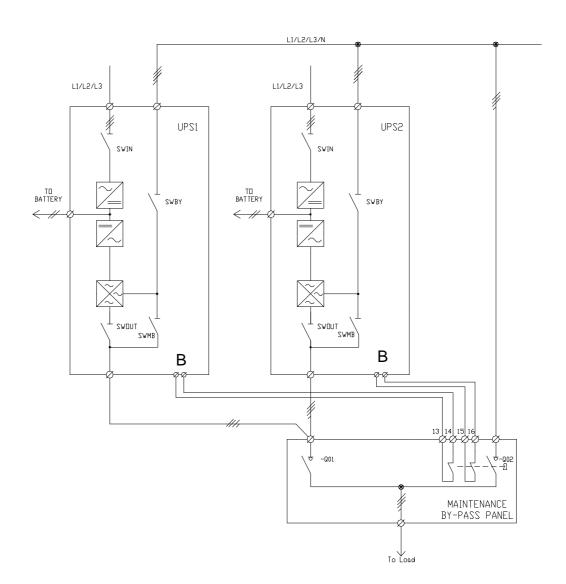
4.2.3 Vorrichtung für Notabschaltung (EPO)

Bei mehreren parallelgeschalteten Geräten muss die EPO-Steuerung gleichzeitig an alle USV gesendet werden. Siehe die Angaben aus der nachstehenden Abbildung.

- a EPO-Klemmen an der USV.
- b- EPO-Schalter, mit Zusatzkontakten (nicht mitgeliefert).


Die Taste muss mit einer Anzahl von Zusatzkontakten ausgestattet sein, die der Anzahl der parallelgeschalteten USV entspricht. An der jeder USV muss die Überbrückung an den EPO-Klemmen abgenommen werden. Anstelle der Überbrückung müssen die vom Zusatzkontakt der Taste kommenden Kabel angeschlossen werden. Bei Taste in Ruhestellung muss der Kontakt geschlossen sein. Sobald die Taste gedrückt wird, muss sich der Kontakt öffnen.

Der Anschluss muss bei ausgeschalteten USV vorgenommen werden.


4.2.4 Externer Wartungs-By-Pass

Um die Wartungsarbeiten an den einzelnen USV, aus denen die Anlage besteht, zu vereinfachen, kann es in einigen Fällen vorteilhaft sein einen externen Wartungs-Bypass einzubauen.

Der neue, an der Bypass-Leitung angebrachte Trennschalter (Q2) muss mit Zusatzkontakten ausgestattet sein (ein Kontakt pro USV), die Position des Kontakts ist umgekehrt in Bezug auf die Position des Schalters, d. h. bei geöffnetem Trennschalter muss der Kontakt geschlossen sein.

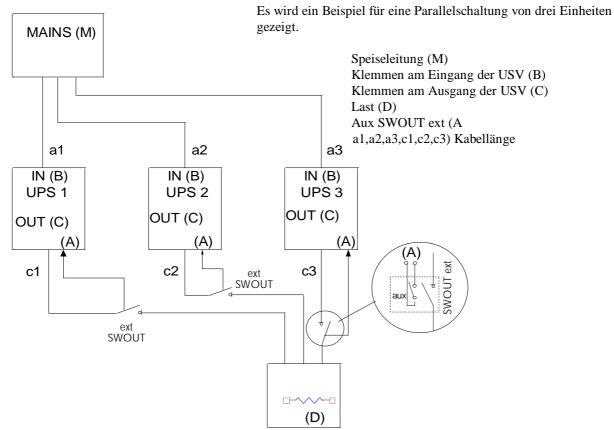
Die Kontakte an jedem Trennschalter müssen an die Klemmen der jeweiligen USV angeschlossen werden (siehe Zeichnung).

4.3 Anschlüsse an Netz, Last und Batterie.

Alle im Kapitel "Anschlüsse an Netz, Last und Batterie" enthaltenen Informationen in Bezug auf die USV behalten auch mit den nachstehenden Ergänzungen ihre Gültigkeit.

4.3.1 Leistungsanschlüsse Eingang/ Ausgang USV AC

Für die Auswahl der Kabel für jede USV siehe in der Bedienungs- und Wartungsanleitung die "EINBAUZEICHNUNG".


Den Anschluss der Phasen beachten

Die Phase L1 der Anlage muss immer an die Phase L1 am Eingang aller USV angeschlossen werden. Alle Phasen L1 am Ausgang müssen zusammengeschlossen und an die Phase L1 der Last angeschlossen werden. Diese Übereinstimmung muss für die Phasen L2, L3 und den Nullleiter am Eingang und am Ausgang beachtet werden.

Die USV wie folgt untereinander parallel schalten:

- Die Phasen der Stromversorgung L1, L2, L3, N an die *entsprechenden* Phasen am Eingang der USV L1, L2, L3, N anschließen.
- Die Phasen der Last L1, L2, L3, N an die *entsprechenden* Phasen am Ausgang der USV L1, L2, L3, N anschließen.

Der Kontakt von aux SWOUT ext muss mit dem Schalter übereinstimmen

Kabellänge

Die Summe der Kabellängen der Stromversorgung und am Ausgang muss für alle Einheiten die gleiche sein. Unter Bezugnahme auf die Zeichnung muss sie sein: a1+c1 = a2+c2 = a3+c3

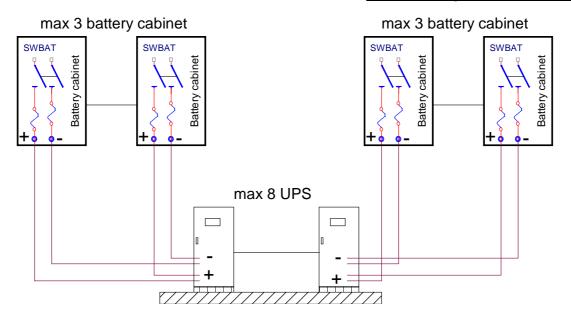
a = Kabellänge Eingangsleitung

a = Kabellänge Ausgangsleitung

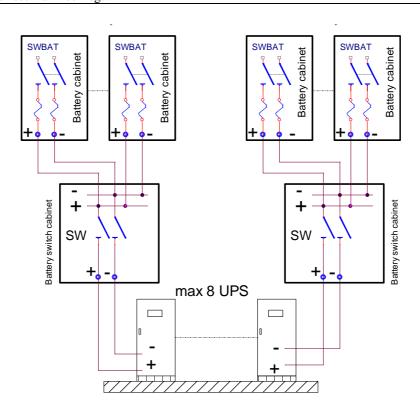
Die gleiche Regel muss auch beachtet werden, wenn es zwei getrennte Speiseleitungen gibt: Die Kabellänge der Bypass-Leitung + Ausgangsleitung muss zwischen allen parallelgeschalteten USV gleich sein.

Die Nichtbeachtung der oben angegebenen Regel verursacht eine Unausgewogenheit der Ströme zwischen den einzelnen USV, wenn die Last über die Bypass-Leitung versorgt wird. Eine Überlast der Bypass-Leitung einer USV in Bezug auf die anderen führt zu einer Beschädigung der internen und externen Bauteile der USV an dieser Linie: Kabel, Trennschalter und elektronische Leistungs-Bauteile.

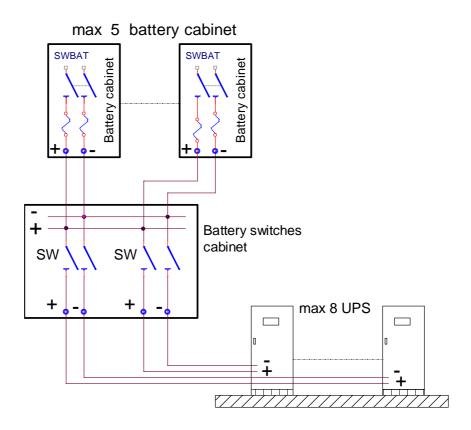
4.3.2 Leistungsanschlüsse Batterieseitig


BATTERIESCHRANK falls vorgesehen

Um an die USV angeschlossen werden zu können, muss der Batterieschrank mit einem Überstrom-Schutz und einer Trennvorrichtung ausgestattet sein.


Dieser Trennschalter <u>darf nur</u> geschlossen werden, <u>wenn</u> die USV regulär gestartet ist. Beim Anschließen an die USV <u>muss</u> der Trennschalter geöffnet bleiben.

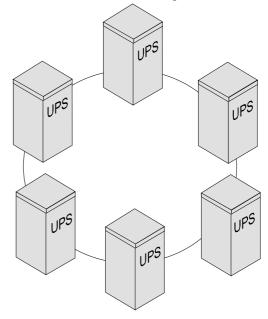
Jede USV mit eigenem Batterieschrank



Trennschalterschrank

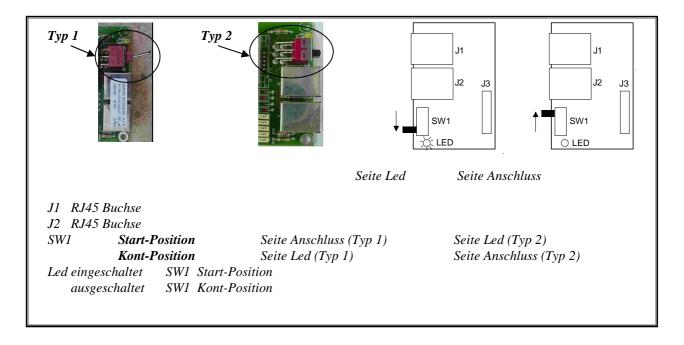
Für Anlagen mit 4 oder mehr Batterieschränken muss ein Schrank mit Trennschalter vorgesehen werden, in dem der Parallelanschluss der Kabel vorgenommen wird (beim Verkaufs-Kundendienst nachfragen). Für die Bemessung der Kabel und die Anschlussarten siehe die "EINBAUZEICHNUNG", die dem Batterieschrank beiliegt.

pag. 40 / 58 0MNMHTM30RUDEUB 00



Für Autonomiezeiten, für die eine größere Anzahl von Batterieschränken benötigt werden, fragen sie bitte bei den Verkaufbüros nach.

4.4 Anschluss für Signale

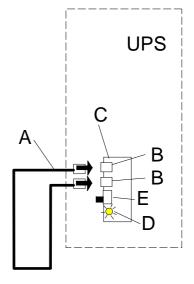

Der Signalanschluss mehrerer, parallelgeschalteter USV ist ein Ringanschluss. Wird der Ring wegen einer Störung oder Wartungsarbeiten an einer Stelle unterbrochen, wird der Anlagenbetrieb nicht beeinträchtigt. Die Anlage arbeitet weiter in Normalbetrieb. Siehe auch im Folgenden die ausführliche Beschreibung.

Der Anschluss durch die einzelnen USV erfolgt mit der Karte für Parallelschaltungen "Signals RJ45-Flat-Adapter", die im unteren Bereich der USV angebracht ist (in dem Bereich für die Signal- und Steuer-Anschlüsse, siehe auch die Beschreibung im Kapitel SIGNALE und FERNBEDIENUNGEN).

- Karte für Parallelschaltung Signals RJ45-Flat-Adapter.

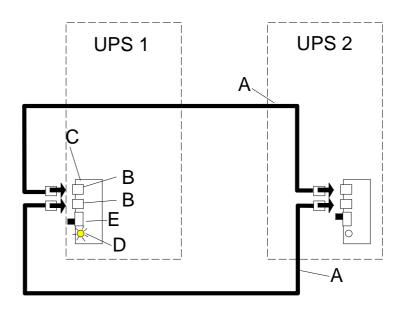
<u>ANMERKUNG:</u> Die USV kann mit zwei unterschiedlichen Versionen von Karten für Parallelschaltung ausgestattet sein. Diese unterscheiden sich durch die Art des verwendeten Schalters (Typ 1 oder Typ 2). Die beiden Schalter unterscheiden sich durch die Position des Schalterhebels.

Firmware Update


Alle parallelgeschalteten USV müssen die gleiche Firmware-Version haben. Wir aus dem Hauptmenu am Display-Bedienfeld die Taste 7 gedrückt, kann die installierte Firmware-Version angezeigt werden. Soll eine bestehende Anlage erweitert werden, muss geprüft werden, ob die Anlage die gleiche Firmware-Version wie die neue USV hat.

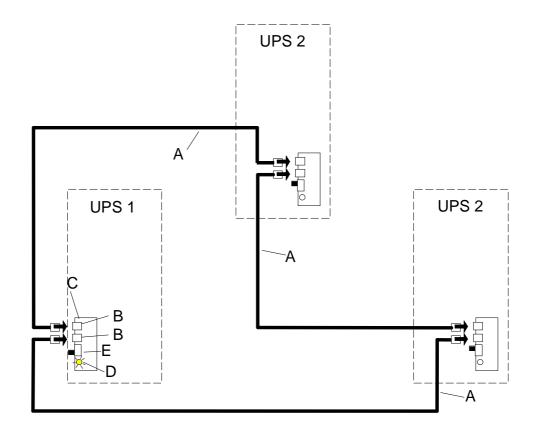
Wird das Kabel mit den zwei RJ45 Anschlüssen benutzt, das mit jeder USV (A) mitgeliefert wird, können die Anschlüsse wie folgt vorgenommen werden:

Einzelne USV mit Konfiguration Parallelschaltung


Soll eine USV, die als Einheit für Parallelschaltung konfiguriert ist, einzeln verwendet werden, muss die Signal-Karte mit dem mitgelieferten Kabel wie folgt überbrückt werden.

- A USV KABEL PARALLELSCHALTUNG
- B Stecker Typ RJ45
- C Karte für Parallelschaltung Signal RJ45-Flat-Adapter.D LED eingeschaltet
- E SW1 Start-Position

Zwei USV


D LED eingeschaltet USV1, LED ausgeschaltet USV2 Е SW1 Start-Position UPS1, SW1 Kont-Position USV2

Drei USV

D LED eingeschaltet USV1,E SW1 Start-Position USV1,

LED ausgeschaltet USV2, SW1 Kont-Position LED ausgeschaltet USV3, USV2, USV3

Um weitere USV in Parallelschaltung hinzuzufügen, muss ein Kabel "USV KABEL PARALLELSCHALTUNG" für jede neu angeschlossene USV hinzugefügt werden.

Wenn eine USV abgeschaltet wird, darf das Signal-Kabel nicht entfernt werden.

4.5 Startverfahren

Bevor die gesamte Anlage (zum ersten Mal) gestartet wird müssen einige Tests ausgeführt werden, um zu prüfen, ob die USV untereinander richtig angeschlossen sind.

- A) Alle Schalter und Trennschalter der USV und der Batterieschränke öffnen (SWIN, SWBY, SWOUT und SWMB).
- B) SWMB nur an einer Einheit schließen und an allen anderen Einheiten folgendes prüfen:
 - □ Die Spannung, die zwischen den Klemmen für den Eingang und Ausgang an jeder USV anliegt muss <2Vac sein. Andernfalls muss die Richtigkeit der Anschlüsse überprüft werden.
 - □ Nach Abschluss dieser Arbeit SWMB öffnen.
- C) SWIN, SWBY und SWOUT schließen und damit die USV1 einschalten. Abwarten, bis am Display die Meldung "NORMALBETRIEB" angezeigt wird.

Nach einem kurzen Moment werden auf der ersten Zeile des Display-Bedienfelds durchlaufend die Meldungen zum USV-Status angezeigt. Unter diesen auch die Meldung zum Status des Batterie-Trennschalters:

Warten: Die BATTERIE NICHT anschließen.

- D) SWIN, SWBY an allen anderen USV schließen.
- E) Prüfen, dass alle in Parallelschaltung angeschlossenen USV eingeschaltet sind.

Den Trennschalter oder die Sicherungen des Batterieschranks <u>erst dann</u> schließen, wenn an der ersten Zeile am Display-Bedienfeld folgende Meldung nicht mehr angezeigt wird:

Warten: Die BATTERIE NICHT anschließen.

NUR FÜR DEN BETRIEB MIT EINZIGER BATTERIE

Auf der zweiten Zeile am Display-Bedienfeld den Buchstaben "X" kontrollieren: Beispiel: "Typ USV", "X" OUT=YYY%VA, BATT=YYY%Ah, 5=ON(or OFF) Anmerkung: Die USV, die den Buchstaben "X" (B oder P) in Großschreibung hat, ist die MASTER-

Einheit.

Das "X" an der Master-Einheit kann sein:

- □ X= B, es ist bereits der Code für die Parallelschaltung der Batterie eingegeben worden. Es muss nur noch der Wert für die Batterie-Leistung eingegeben werden (siehe unten).
 - □ X= P, es muss der Code für die Parallelschaltung der Batterie eingegeben werden. Dazu am Bedienfeld die folgenden Tasten in der angegebenen Reihenfolge drücken: 3, 5, und den Code 467123 (zum Deaktivieren der Parallelschaltung die gleiche Reihenfolge wiederholen).

Die USV, die an die USV angeschlossen sind, in die der Code eingegeben wird, werden automatisch über das Parallel-Kabel konfiguriert (an allen USV wird der Buchstabe "b" angezeigt).

Den Wert für die Leistung der einzigen Batterie eingeben. Dieser Wert muss an der USC MASTER eingegeben werden. Die USV schickt die Information über das Signal-Kabel an die anderen Einheiten.

G) SWMB an der USV1 schließen und die Übergabe der gesamten Anlage auf die Bypass-Leitung überprüfen (das LED für den Bypass muss blinken, während es an den anderen USV ständig eingeschaltet sein muss), anschließend SWMB wieder öffnen. Einige Sekunden warten und prüfen, ob sich die USV1 wieder auf "NORMALBETRIEB" zurückstellt.

Diesen Arbeitsschritt an den anderen angeschlossenen USV wiederholen.

Ist die Überprüfung in Ordnung, SWOUT an allen Einheiten schließen.

Die Sperre wieder an allen SWMB anbringen, so dass sie in geöffneter Position blockiert werden.

- H) Nach Abschluss der Startphase müssen sich alle USV im Zustand "NORMALBETRIEB" befinden.
- I) Eine Minute nach Einschalten der letzten USV prüfen, dass bei nicht angeschlossener Last für die Ausgangsleistung an jeder Einheit <3% angezeigt wird.
- L) Nachdem die Last am Ausgang geschlossen worden ist, eine Minute warten und prüfen, dass die Verteilung zwischen den einzelnen Einheiten innerhalb von $\pm 2\%$ liegt.

4.6 Betriebsarten

Mehrere, in Parallelschaltung miteinander verbundene USV teilen die Lasten-Stromaufnahme untereinander auf. In einer Anlage mit mehreren, in Parallelschaltung miteinander verbundenen USV hat eine MASTER-Einheit, die restlichen sind SLAVE. Die USV sind untereinander identisch und die Zuordnung der MASTER erfolgt beim Einschalten. Die MASTER-Einheit kann am Display durch den Großbuchstaben "P" erkannt werden (oder "B", wenn es sich um eine einzige Batterie handelt). Die MASTER und SLAVE Einheiten können untereinander die Rolle wechseln. Bei einem Ausfall einer Einheit, z. B. Störung am Wechselrichter, wird diese Einheit automatisch getrennt. Die Last wird jetzt zwischen den noch aktiven Einheiten aufgeteilt. Ist die Ausgangsleistung für die restlichen Einheiten zu hoch, schaltet die System-Logik alle Einheiten, auch die getrennte Einheit, auf die Bypass-Leitung.

Alle im Kapitel "Betriebsarten" enthaltenen Informationen in Bezug auf die USV behalten auch mit den nachstehenden Ergänzungen ihre Gültigkeit.

BETRIEBSART ON LINE

Am Display aller USV wird folgende Meldung angezeigt: "NORMALBETRIEB", unten links, in der Nähe des Anzeige des Modells, wird der Buchstabe "P" angezeigt. Dieser Buchstabe ist ein Großbuchstabe, wenn das betreffende Gerät der MASTER ist, es ist ein Kleinbuchstabe, wenn die USV eine SLAVE ist.

BETRIEBSART STAND-BY ON

Die Lasten-Verteilung zwischen den USV hängt ausschließlich von der Kabellänge ab. Es müssen daher die Regeln für die Anschlusslängen beachtet werden, die im Kapitel "Anschlüsse" angegeben sind. Bei einem Ausfall des Versorgungsnetzes wird die Last an alle parallelgeschalteten USV übergeben.

BETRIEBSART STAND-BY OFF

In dieser Betriebsart wird bei einem Ausfall des Versorgungsnetzes die Last mit gleichem Prozentwert an die Geräte verteilt. Bei vorhandenem Versorgungsnetz wird die Last nicht versorgt.

BETRIEBSART STABILISATOR OHNE BATTERIE

In dieser Betriebsart wird die Last mit gleichem Prozentwert unter den Geräten aufgeteilt.

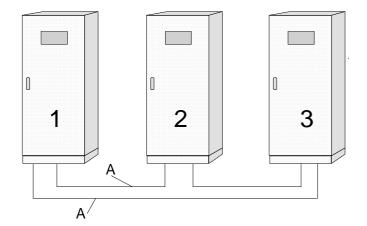
BATTERIEBETRIEB

Eine Batterie für jede USV

Jede Einheit entnimmt den Strom aus der eigenen Batterie. Nach Ablauf der eigenen Autonomiezeit schaltet sich jede USV selbst ab. Die Last bleibt nicht versorgt, wenn die Dauer des Netzausfalls länger als die Autonomiezeit der gesamten Anlage ist. Bei Rückkehr der Netz-Stromversorgung wird die Anlage automatisch neu gestartet. Jede USV übernimmt das Aufladen der eigenen Batterie.

Eine Batterie für alle USV

Jede Einheit entnimmt den Strom aus der gemeinsamen Batterie. Nach Ablauf der Autonomiezeit schaltet sich die gesamte Anlage ab. Die Last bleibt nicht versorgt, wenn die Dauer des Netzausfalls länger als die Autonomiezeit der gesamten Anlage ist. Bei Rückkehr der Netz-Stromversorgung wird die Anlage automatisch neu gestartet. Jede USV übernimmt das Aufladen der gemeinsamen Batterie.

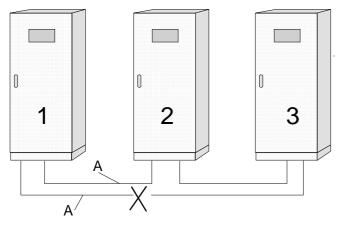

ÜBERLAST

In diesem BetriebsART wird die Überlast mit gleichem Prozentwert unter den Geräten aufgeteilt. Wird die an der Anlage abliegende Last nicht reduziert, erfolgt eine Übergabe der gesamten Anlage auf die Bypass-Leitung. Nachdem die Überlast beseitigt worden ist, stellen sich alle Einheiten automatisch auf Normalbetrieb zurück. Bleibt die Überlast hingegen bestehen, werden die externen Schutzvorrichtungen am Eingang der USV an der Bypass-Leitung ausgelöst. In diesem Fall würde die Last nicht mit Strom versorgt werden.

Beispiel für einen Betrieb mit Parallelschaltung

Zur Vereinfachung beziehen sich die nachstehenden Angaben auf eine Anlage mit drei USV. Die Angaben behalten ihre Gültigkeit aber auch für komplexere Anlagen.

Davon ausgehend, dass das Signalkabel nicht beschädigt ist, und dass sich die USV in folgendem Zustand befinden:

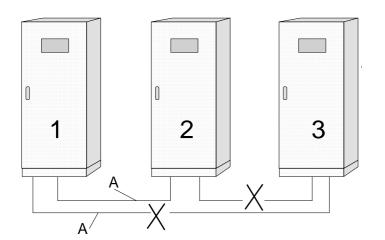

USV ZUSTAND

- 1) Normalbetrieb, Master-Einheit
- 2) Normalbetrieb, Slave-Einheit
- 3) Normalbetrieb, Slave-Einheit

A UPS PARALLELKABEL Typ RJ45 1,2,3 parallelgeschaltete USV

Wenn das Signalkabel zwischen USV 1 und 3

geöffnet wird (UPS PARALLELKABEL Typ RJ45).


richtig versorgt. Alle USV geben Leistung zur Last ab.

USV ZUSTAND

- 1) Normalbetrieb, Master-Einheit mit Meldung am Bedienfeld "Defekt Signalkabel Parallelschaltung".
- 2) Normalbetrieb, Slave-Einheit mit Meldung am Bedienfeld "Defekt Signalkabel Parallelschaltung".
- 3) Normalbetrieb, Slave-Einheit mit Meldung am Bedienfeld "Defekt Signalkabel Parallelschaltung".

Anmerkung: In dieser Situation wird die Last

Davon ausgehend, dass die Signalkabel zwischen USV 1, 3, und 2, 3 geöffnet werden.

USV ZUSTAND

- 1) Normalbetrieb, Master-Einheit mit Meldung am Bedienfeld "Defekt Signalkabel Parallelschaltung".
- 2) Normalbetrieb, Slave-Einheit mit Meldung am Bedienfeld "Defekt Signalkabel Parallelschaltung".
- 3) Getrennt (TLI offen, SCR ausgeschaltet), Slave-Einheit mit Meldung am Bedienfeld "INTERER FEHLER 10". Anmerkung: In diesem Fall wird die Last nur richtig von den USV 1 und 2 versorgt.

Um das beschädigte Signalkabel zu

reparieren, muss als erstes die USV mit der Meldung am Bedienfeld "INTERER FEHLER 10" ausgeschaltet werden.

4.7 Wartungs-Bypass

Bei der Betätigung von SWMB folgende Hinweise beachten

An einer ausgeschalteten USV, die sich in Parallelschaltung mit anderen USV in Normabetrieb befindet, darf SWMB nicht geschlossen werden. Dieser Vorgang kann sowohl Schäden an den USV verursachen als auch zu gefährlicher Spannung am Ausgang führen. SWMB kann an funktionierenden USV gemäß der Angaben aus dem Kapitel "BETRIEBSARTEN" geschlossen werden.

Nicht auszuführende Arbeiten

Das Schließen des Trennschalters SWMB an einer beliebigen Einheit führt zur Übergabe der gesamten Anlage auf Bypass.

Ein eventuelles anschließendes Öffnen aller Schalter, um Wartungsarbeiten ausführen zu können, würde zu einer Übergabe der gesamten, von der Last angeforderten, Leistung auf den Wartungs-Bypass der Einheit führen, an der SWMB geschlossen wurde.

ACHTUNG: Die Bypass-Leitung, sowohl die automatische als auch die für die Wartung jeder USV, ist für die Nennleistung der einzelnen Einheit bemessen.

ANMERKUNG: Für eine Wartung an allen USV müssen <u>die Trennschalter SWMB an allen Einheiten</u> geschlossen werden.

Wartung an einer einzelnen Einheit

Für Wartungsarbeiten an einer einzelnen Einheit (z. B. USV1) wie folgt vorgehen:

Die Schalter SWBY, SWOUT, SWIN und den Trennschalter im Batterieschrank nur an der Einheit 1 öffnen. Sind die aktiven USV in der Lage die Last mit Strom zu versorgen, bleibt die Anlage in Normalbetrieb, und an der USV1 können die Wartungsarbeiten ausgeführt werden.

Wartung an der gesamten Anlage

Nachstehend wird die Reihenfolge der Arbeitsschritte beschrieben, die ausgeführt werden müssen, um die Anlage auf Wartungs-Bypass zu stellen. Je nach Ausgangsstatus unterscheiden sich die einzelnen Verfahren:

- Alle USV sind in NORMALBETRIEB

<u>Verfahren a</u>) <u>Die Last unterliegt bei der Übergabe keinerlei Unterbrechung.</u>

- Die gesamte Anlage mit nicht mit der Bypass-Leitung synchronisiertem Ausgang.

<u>Verfahren b)</u> <u>Die Last unterliegt einer Unterbrechung der Stromversorgung.</u> (daher sollte dieser Vorgang nur dann ausgeführt werden, wenn es unbedingt erforderlich ist)

Verfahren a)

Die Bypass-Leitung ist vorhanden und sowohl in Bezug auf Frequenz als auf Spannung geeignet.

*Am USV-Display wird NORMALBETRIEB angezeigt.

- 1. Werden nacheinander, wie am Display angegeben, die Tasten 4, 7, 2, 6, 3 gedrückt, wird die Steuerung Bypass mit Abschalten des Wechselrichters eingeschaltet (Die USV, die an die USV angeschlossen sind, in die der Code eingegeben wird, werden automatisch über das Parallel-Kabel konfiguriert);
- 2. schließen und die Übergabe der gesamten Anlage auf die Bypass-Leitung überprüfen;
- 3. Alle Trennschalter SWMB schließen;
- 4. Alle Geräteschalter öffnen (SWIN, SWOUT,SWBY und die Trennschalter/ Sicherungen im Batterieschrank) und nur die Trennschalter SWMB (Leitung Wartungs-BYPASS) geschlossen halten. Die Bedienfelder bleiben ausgeschaltet.

ANMERKUNG: Nach dem Ausführen der oben angegebenen Arbeitsschritte muss das Fachpersonal vor Arbeiten im Gerät ungefähr 10 Minuten warten, bis sich die Kondensatoren entladen haben.

In dieser Situation (während der Wartungsarbeiten) wirkt sich eine eventuelle Störung (z. B. Stromausfall) an der Speiseleitung der USV auf die stromversorgten Geräte aus (die Batterien sind bei diesem Betriebszustand deaktiviert).

Verfahren b)

Die Bypass-Leitung ist außerhalb des Akzeptanzbereiches, an den Display-Bedienfeldern erscheint die Meldung: FALSCHE BYPASS-SPANNUNG oder SWBY OFF.

- 1. Alle Geräteschalter öffnen (SWIN, SWOUT, SWBY und die Trennschalter/ Sicherungen im Batterieschrank). Die Bedienfelder bleiben ausgeschaltet.
- 2. Bevor der Schalter SWMB zum Anschluss der Lasten geschlossen wird, muss abgeschätzt werden, ob die Speiseleitung geeignet ist die angeschlossenen Lasten in Bezug auf Frequenz- und Spannungswert zu versorgen.

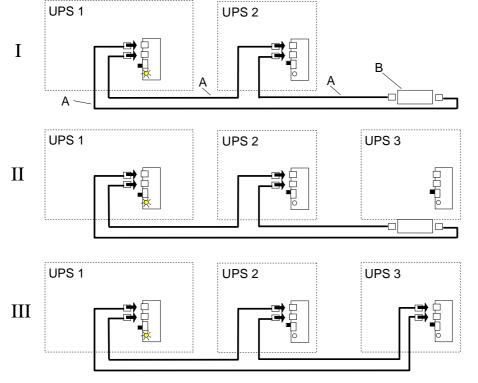
ANMERKUNG: Nach dem Ausführen der oben angegebenen Arbeitsschritte muss das Fachpersonal vor Arbeiten im Gerät ungefähr 10 Minuten warten, bis sich die Kondensatoren entladen haben.

Nach den Wartungsarbeiten die USV entsprechend der Angaben aus dem Absatz STARTVERFAHREN neu starten (siehe Seite 45), anschließend den Trennschalter SWMB öffnen (er war vorher geschlossen worden). Die USV nimmt den NORMALBETRIEB wieder auf.

Einsetzen und Entfernen von funktionierenden USV (warmer Austausch)

Das "warme" Einsetzen und Entfernen der USV ist nur möglich, wenn das System mit dem **abgeschirmten** Adapterkabel RJ45 Buchse/ RJ45 Buchse konfiguriert ist (siehe nachstehende Abbildungen).

Dank der Möglichkeit zum "warmen" Einsetzen und Entfernen der USV wird der Kundendienst und die Zuverlässigkeit der Anlage verbessert.


Wenn eine neue Einheit hinzugefügt oder entfernt werden soll, brauchen nicht mehr alle USV ausgeschaltet zu werden.

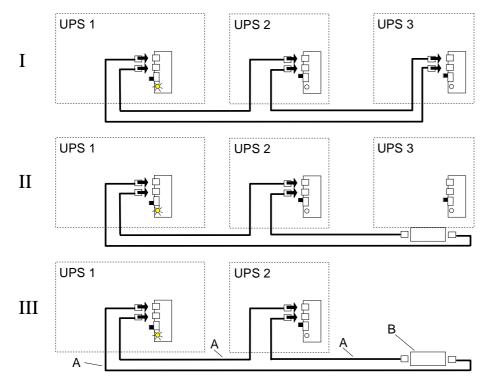
Das "warme" Einsetzen und Entfernen kann nur an USV-Anlagen ausgeführt werden, die folgenden Eigenschaften haben:

In der USV-Anlage muss eine Verteilertafel vorgesehen sein (für die Leistungs-Anschlüsse).

In der USV-Anlage muss ein abgeschirmtes Adapterkabel RJ45 Buchse/ RJ45 Buchse vorgesehen sein (wird nicht mit den USV mitgeliefert). Alle USV in der Anlage müssen die gleiche Firmware-Version haben.

Beispiel für warmes Einsetzen

- A) USV Parallelkabel Typ RJ45
- B) Abgeschirmtes Adapterkabel RJ45 Buchse/ RJ45 Buchse USV BYPASS-KABEL


Phase II Die neue USV Einsetzen (Leistungsanschlüsse in der Verteilertafel) und ausgeschaltet lassen. USV 3: SW1 Kont-Position

Phase III Den Adapter B entfernen, die neue USV anstelle des Adapters einsetzen. Jetzt kann die USV 3 (hinzugefügte USV) eingeschaltet werden.

Prüfen, dass der Starthebel an SW1 nur an einer USV in Start-Position ist, und dass er an allen anderen auf Kont-Position steht. Prüfen, dass alle USV in Normalbetrieb funktionieren, und dass die Anlage die Ausgangsleistung verteilt.

Beispiel für warmes Entfernen

Dank der Möglichkeit zum "warmen" Entfernen brauchen nicht mehr alle USV der Anlage ausgeschaltet zu werden, wenn nur eine USV entfernt werden soll.

- A) USV Parallelkabel Typ RJ45
- B) Abgeschirmtes Adapterkabel RJ45 Buchse/ RJ45 Buchse USV BYPASS-KABEL

ANMERKUNG: Befindet sich SW1 an der USV, die getrennt werden soll, in Start-Position, muss eine der anderen USV (USV 1 oder USV 2) auf Start-Position gestellt werden.

In der Anlage muss eine USV SW1 auf Startposition und LED haben.

Phase I Die USV (3) ausschalten, die getrennt werden soll. Das Signalkabel von der auszubauenden USV entfernen.

Phase II-III Das abgeschirmte Adapterkabel RJ45 Buchse/ RJ45 Buchse (nicht mitgeliefert) zwischen den Kabeln A anschließen.

Prüfen, dass alle USV in Normalbetrieb funktionieren, und dass die Anlage die Ausgangsleistung verteilt.

Diese Seite wurde absichtlich leer gelassen

5. Wartung

zu gestalten.

Die USV-Einheiten sind für eine lange Haltbarkeit auch unter schweren Einsatzbedingungen entwickelt und hergestellt worden. Bitte beachten Sie, dass es sich um elektrische Leistungssysteme handelt, die als solche regelmäßig kontrolliert werden müssen. Außerdem haben einige Bauteile einen eigenen Lebenszyklus und müssen daher regelmäßig überprüft und, falls ihr Zustand es erfordert, gegebenenfalls ausgewechselt werden: Das bezieht sich besonders auf die Batterien, die Kühlgebläse, und in einigen Fällen auf die Elektrolytkondensatoren. Wir empfehlen daher ein Wartungsprogramm zu erstellen, das von autorisiertem Fachpersonal des Hersteller ausgeführt werden muss.

Der Kundendienst des Unternehmens steht Ihnen zur Verfügung, um persönliche Wartungsprogramme

Regelmäßige Wartungsarbeiten (bei geschlossenen Türen durch ausgebildetes Personal auszuführen)

Regelmäßig (z. B. einmal in Monat, häufiger bei schwierigen Raumbedingungen) folgende Arbeiten ausführen (bei diesen Arbeiten müssen die Türen unbedingt geschlossen bleiben).

- Sicherstellen, dass die Luft-Einlassschlitze (an der Vordertür und am Schrankboden) und die Luft-Austrittsgitter am Schrankdach sauber sind.
- Sicherstellen, dass die USV richtig funktioniert (am Display-Bedienfeld muss "NORMALBETRIEB" angezeigt sein). Ist eine Alarmmeldung vorhanden, muss in der Anleitung deren Bedeutung überprüft werden, bevor der technische Kundendienst benachrichtigt wird.
- Mit dem Display-Bedienfeld einen Batterie-Test ausführen.

Wartung in der USV (nur durch ausgebildetes Fachpersonal)

Die Wartungsarbeiten in der USV dürfen ausschließlich von ausgebildetem Fachpersonal vorgenommen werden. Die USV ist für eine Lasten-Stromversorgung entwickelt worden, wenn sie von der Speiseleitung getrennt wird.

Es besteht Hochspannung in der USV, wenn die Stromversorgung und die Batterie getrennt sind.

Nach dem Trennen von Speiseleitung und Batterieschrank muss das Fachpersonal vor Arbeiten im Gerät ungefähr 10 Minuten warten, bis sich die Kondensatoren entladen haben.

Ordentliche Wartung der Batterien (nur durch ausgebildetes Fachpersonal)

Die Anlage kontrolliert automatisch alle 24 Stunden die Batterie-Effizienz und gibt Alarm, wenn die Effizienz wesentlich unter dem Wert liegt, der anhand des gespeicherten Leistungs-Wertes liegt.

Die Batterie-Lebensdauer ist an die Betriebstemperatur und die Anzahl der ausgeführten Lade-/ Entladezyklen gebunden.

Die Batterieleistung ist kein konstanter Wert. Sie nimmt nach einigen Lade-/ Entlade-Zyklen zu, bleibt dann für einige Hundert Zyklen konstant, und nimmt dann definitiv ab.

Für die Instandhaltung der Batterien ist folgendes vorgesehen:

- Die Betriebstemperatur muss zwischen 20 25°C gehalten werden.
- Während des ersten Einsatzmonats zwei oder drei Lade-/ Entlade-Zyklen ausführen.
- Nach dem ersten Einsatzmonat alle sechs Monate einen Lade-/ Entlade-Zyklus ausführen.

Da die Batterien Stromquellen sind, beseitigt das Öffnen des Batterie-Trennschalters nicht die Spannung in den Batterien. <u>NICHT VERSUCHEN IN DEN BATTERIESCHRANK ZU GELANGEN. IN DER NÄHE DER BATTERIEN GIBT ES IMMER GEFÄHRLICHE SPANNUNGEN.</u> Besteht der Verdacht, dass die Batterien defekt sind, setzen Sie sich bitte mit dem Kundendienst in Kontakt.

Ein eventueller Batteriewechsel muss von einem *Fachtechniker* vorgenommen werden. Für die Entsorgung der ausgetauschten Batterieelemente besteht die Vorschrift, dass diese an einen der entsprechenden Abfallzweckverbände zum Recycling übergeben werden. Die Batterien werden als Sonderabfall (giftige Abfälle) klassifiziert.

Diese Seite wurde absichtlich leer gelassen

6. Allgemeine technische Angaben

System	MASTER HP -Leistung (kVA)		
Nennleistung	300 400 500 600		
[kVA]			
Max. Fehlerstrom [mA]	300		
Fernmeldung:	3 Wechselkontakte (Voralarm Autonomieende der		
	Batterie, Entladung der Batterie, Bypass/Störung);		
	Spannungsversorgung Ausgang 12 Vdc 80 mA		
Serienmäßig:	EPO (Emergency Power Off) Not Aus		
	Nr. 2 RS232 - 1 Schnittstelle		
Optional:	parallelkit, 2 netman 102 plus- oder multicom-karten, 2		
	karten fernalarme, modem		
Betriebstemperatur:	0 ÷ + 40 °C		
Höchsttemperatur für 8 Stunden am Tag:	Tag: + 40°C		
Durchschnittstemperatur für 24 Stunden: + 35°C			
Relative Feuchtigkeit bei +20°C:	20÷90 %		
Kühlung:	Zwangsbelüftung		
Max. Betriebshöhe:	1000 m bei Nennleistung (-1% Leistung für jede 100 m		
	über 1000 m) max. 4000 m		
Geräusch gemessen bei 1 m Abstand von der			
Vorderseite (sämtliche Schalttafeln sind	72 dbA		
montiert):			
Kabeleingang:	von unten		
Anzuwendende Normen:	Siehe die "Sicherheits-und Konformitätshandbuch" die		
	zusammen mit der USV (0MNA141_NE).		

Elektrische Daten		MASTER HP -Leistung (kVA))
		300	400	500	600
EINGANG					
Nennspannung		400Vac 3-phasig			
Toleranz Nennspannung			+20%, -10%	(100% load)	
(bei Batterieladung)				(85% load)	
			+20%, -30%	(75% load)	
			+20%, -40%	6 (65% load)	
	[Hz]		50	/ 60	
Eingangsfrequenz-Toleranz			von 45 l	ois 65Hz	
Nennstromaufnahme (400V)	[A]	423	564	702	842
	VA]	293	391	486	583
Maximale Stromaufnahme bei Volllas und Batterien in Aufladung (A)	st	476	635	794	953
Leistungsfaktor bei Nennspannung (40	001/				
und bei zwischen 25% bis 100% gelad		>0,99			
Batterie	iciici	>0,99			
Klirrfaktor des Stroms (THDi)					
(eingang THDV ≤1%) % L	ast				
>	25%	≤8			
>	50%	≤ 5			
>	75%	≤3			
Progressives Anlaufen des Gleichrichters		einstellbar (0÷120s)			
(Power Walk-in)		emstenoar (0-120s)			
Verzögerung beim progressiven Anlaufen					
des Gleichrichters (Power Walk-in del	lay	einstellbar (0÷120s)			
timer)					

Elektrische Daten	MASTER HP -Leistung (kVA)			
Elektrische Daten	300	400	500	600
GLEICHSTROM-ZWISCHENKREIS				
Blöcke/ Anzahl Blei-Elemente	40 / 240			
Ripple-Spannung bei geladener Batterie (%)		Circa ()	
Ladestrom (*) [A]				
Volllast	65	90	110	135
Last 90%	120	160	200	240
Last 80%	170	220	280	340
Last ≤ 70%	200	260	330	390

^(*) Nenneingangsspannung, 240 Elemente

		MASTER HP -Leistung (kVA)					
Elektrische Daten	300		400		500		600
WECHSELRICHTER		-		-			
Nennleistung Pf 0.9 ind. (kVA	300		400		500		600
Wirkleistung Pf 1 (kW	270		360		450		540
Nennspannung	400Vca	400Vca dreiphasig + N (einstellbar von 380V bis 415V)				ois 415V)	
Nennfrequenz		50 oder 60Hz (einstellbar)					
Einstellungsbereich der Nennspannung			von 36	50 bis	420V		
Statische Schwankung				± 1%			
Dynamische Schwankung				± 5%			
Wiederherstellungszeit innerhalb ± 1%				20ms			
		Gemäß	Richtlinie Richtlinie	EN 6	52040-3, I	Klasse	1
Strom-Crestfaktor (Ipeak/Irms gemäß EN 62040-3)		3:1					
Spannungsverzerrung bei linearer Last		1% (typisch), 2% (max)					
Spannungsverzerrung bei nicht linearer Las (EN 62040-3)	st	< 3%					
Frequenzstabilität bei mit Bypass-Netz synchronisiertem Wechselrichter	± 2% (e	\pm 2% (einstellbar von \pm 1% bis \pm 6% über Bedienfeld)					
Frequenzstabilität bei nicht mit Bypass-Net synchronisiertem Wechselrichter	Z	± 0,05%					
Geschwindigkeit der Frequenzschwankung		1Hz/s					
Dissymmetrie der Phasenspannung bei ausgeglichener und unausgeglichener Last		≤ 1%					
Phasenungleichheit der Spannungen bei ausgeglichener und unausgeglichener Last		120 ± 1 °El					
Überlast in Bezug auf Nennleistung Dreiphasi	_	110% für 60'; 125% für 10'; 150% für 1'					
Einphas	1g	200% für 6s					
Kurzschlussstrom Phase / Ph	ase	180% für 1 Sekunde mit Strombegrenzung					
Phase / Nulllei	ter 30	300% für 1 Sekunde mit Strombegrenzung					
Wirkungsgrad Wechselrichter (Batteriebetriebs)				94%			

	MASTER HP -Leistung (kVA)			
Elektrische Daten	300 400 500 600			
BYPASS				
Nennspannung	400Vca dreiphasig + N (einstellbar von 380V bis 415V)			
Nennspannungs-Toleranz	\pm 20% (einstellbar von \pm 5% bis \pm 25% über Bedienfeld)			
Nennfrequenz	50 oder 60Hz (Selbsterlernung)			
Frequenz-Toleranz	$\pm 2\%$ ($\pm 1 \div \pm 6\%$ über Bedienfeld)			
Umschaltung auf Bypass mit Wechselrichter in Synchronisierung (USV in "Normal Mode")	< 1			
Umschaltung auf Bypass mit Wechselrichter nicht in Synchronisierung (USV in "Normal Mode")	100 ms			
Umschaltung von Bypass auf Wechselrichter (USV in "Stand-by On mode")	von 2 bis 5ms			
Verzögerung bei Übergabe an Wechselrichte nach Umschaltung auf Bypass	4 s			
Überlast-Sicherheit bei Leistung der Leitung auf Bypass (kVA)	110% für 60 Minuten, 125% für 10 Minuten, 150% für 1 Minute			
i ² t SCR bypass, 8÷10ms [A ² s] 25°C 125°C	1800k 6480k			
Kurzschluss-Sicherheit der Bypass-Leitung (x Nennstrom)	e 12 9 7 12 13 10 8 14 15 11 9 16 17 13 10 18			
1 Sekunde	e 12 9 7 12			
500 ms	13 10 8 14			
200 ms	15 11 9 16			
100 ms				
10 ms	25 18 15 25			

pag. 56 / 58 0MNMHTM30RUDEUB 00

7. Anhang A – Karte Alarme und Fernsteuerungen

In Bezug auf die Standard-Konfiguration der Alarm-Karte (siehe Seite 19) kann das Kundendienst-Personal andere Funktionen sowohl für die Steuerungen als für die drei Alarme einstellen. Nachstehend eine Auflistung der zur Verfügung stehenden Optionen:

ALARME:

- STÖRUNG AN BYPASS-LEITUNG
- MANUELLER BY-PASS, SWMB-ON
- FALSCHE BYPASS -SPANNUNG oder SWBY, FSCR OFF
- FALSCHE VERSORGUNGS-SPANNUNG oder SWIN OFF
- VORALARM, NIEDRIGE BATTERIESPANNUNG
- BATTERIE ENTLADEN oder SWB OFFEN
- NIEDRIGE VERSORGUNGS-SPANNUNG oder ÜBERLAST [W]
- ÜBERLAST AUSGANG
- BY-PASS WEGEN VA AUSGANG < WERT AUTO_OFF
- INTERNER FEHLER: Nummer
- VORÜBERGEHENDER BYPASS, WARTEN
- BY-PASS WEGEN ÜBERLAST AUSGANG
- BYPASS STEUERUNG EINGESCHALTET; 8=AUSGESCHALTET
- FERNSTEUERUNG FÜR BYPASS:EINGESCHALTET 8=AUSGESCHALTET
- ÜBERHITZUNG ODER AUSFALL KÜHLGEBLÄSE
- FALSCHE PHASENLAGE EINGANG
- AUSGANG FEHLT SWOUT ODER SWMB SCHLIESSEN
- STEUERUNG GESAMT-ABSCHALTUNG EINGESCHALTET; 8=AUSGESCHALTET
- FERNSTEUERUNG FÜR GESAMT-ABSCHALTUNG: EINGESCHALTET 8=AUSGESCHALTET
- SPEICHER GEÄNDERT: CODE = Nummer
- AUTO-OFF Timer: Toff= 0: 0', Ton= 0: 0'

Für die Erläuterung der Alarme siehe Bedienungsanleitung: "Anzeige- und Bedieneinheit".

STEUERUNG:

Name	Beschreibung	Typische Anwendung
Sperren der Batterie- Ladung	Sperrt das Aufladen der Batterie, und stellt dabei, unabhängig von der Last, dem Ladestrom auf Minimum. Dieser Vorgang wird mit einem geschlossen gehaltenen Kontakt erhalten. Bei erneuter Öffnung wird die Steuerung gelöscht.	Ist ein Stromaggregat vorhanden, kann dessen Ausgangsleistung nur für die Lasten- Stromversorgung und nicht auch für das Aufladen der Batterie verwendet werden.
Sperren des Synchronismus mit dem Ersatznetz	Schaltet die Verwendung der Bypass- Leitung und der Synchronisierung der Wechselrichters aus. Bei einer Überlast oder Störung erfolgt eine Schutzabschaltung der USV und die Last wird nicht versorgt. Dieser Vorgang wird mit einem geschlossen gehaltenen Kontakt erhalten. Bei erneuter Öffnung wird die Steuerung gelöscht.	Kann verwendet werden, wenn die Frequenz des Stromaggregats oder der Ersatznetzes sehr instabil ist und daher vorgezogen wird, eine Synchronisierung des Wechselrichters zu sperren.
Kontakt Batterie- Trennschalter	Aktiviert den Alarm "Batterie entladen oder getrennt". Kann verwendet werden, um das Öffnen eines extern von der USV angebrachten Batterieschalters anzuzeigen. Es muss ein geschlossener Kontakt geliefert werden, wenn der externe Schalter geöffnet wird.	Zeigt den Zustand des Batterie- Trennschalters an.

	Übersteuert die Auswahl des USV-	Kann verwendet werden, wenn
Standby on	BetriebsART Standby-ON. Dieser Vorgang wird mit einem geschlossen gehaltenen Kontakt erhalten. Bei erneuter Öffnung wird die Steuerung gelöscht.	die Last Netzstörungen oder Frequenzschwankungen aushält und daher vorgezogen wird den Anlagen-Wirkungsgrad zu verbessern. Bei einem Netzausfall wird die Last versorgt.
Batterietest	Startet den automatischen Batterietest, wenn sich die USV in Normalbetrieb befindet. Beendet automatisch einen laufenden automatischen Batterietest. Diese Vorgänge werden durch Übergang von offenen auf geschlossenen Kontakt erhalten.	Kontrolle des Batterie-Zustands.
		Kontrolle des Batterie-Zustands.
Batterietest	Startet einen "manuellen" Batterietest. Dieses dauert bis zum Empfang eine Steuerbefehlt zur Gesamt-Abschaltung oder bis zur vollständigen Entladung der Batterie. Beendet einen laufenden "manuellen" Test. Diese Vorgänge werden durch Übergang von offenen auf geschlossenen Kontakt erhalten.	ANMERKUNG: Bei diesem Test bleibt der Gleichrichter mit niedriger Ausgangsspannung eingeschaltet, so dass Strom durch die Batterie abgegeben werden kann und ein Ausschalten des Wechselrichters nach der Entladung der Batterie vermieden wird.
Manuelle Batterieladung	Startet eine "einzelne manuelle Batterieladung". Beendet die laufende Batterieladung. Diese Vorgänge werden durch Übergang von offenen auf geschlossenen Kontakt erhalten.	Einschalten der Batterieladung über Fernbedienung.
Aktivierung Abschalten an Bypass	Bypass-Steuerung mit Abschaltung des Wechselrichters nach dem Umschalten auf Bypass. ANMERKUNG: Diese Steuerung wird nur ausgeführt, wenn die Bypass-Leitung mit richtigen Werten vorhanden ist. Dieser Vorgang wird durch Übergang von offenen auf geschlossenen Kontakt erhalten.	Bei einem Netzausfall wird die Last nicht versorgt. Kann für nicht kritische Lasten verwendet werden. Ermöglicht bei einem Netzausfall, dass die Batterie nicht entladen wird.
Sperren Abschalten an Bypass	Stellt die Bypass-Steuerung auf Null. Dieser Vorgang wird durch Übergang von offenen auf geschlossenen Kontakt erhalten.	Löscht den vorherigen Vorgang, schaltet das Abschalten des Wechselrichters aus.
Wechselrichter EIN/ AUS	BEDINGUNGSLOSE Steuerung zum Abschalten des Wechselrichters (die Steuerung wird auch dann ausgeführt, wenn keine Bypass-Leitung vorhanden ist). Die USV schaltet nur dann auf Bypass, wenn die Bypass-Leitung vorhanden ist (andernfalls bleibt die Last ohne Stromversorgung). Dieser Vorgang wird mit einem geschlossen gehaltenen Kontakt erhalten. Bei erneuter Öffnung wird die Steuerung gelöscht.	Bei einem Netzausfall wird die Last nicht versorgt. Kann für nicht kritische Lasten verwendet werden. Ermöglicht bei einem Netzausfall, dass die Batterie nicht entladen wird.
Gleichrichter aus	BEDINGUNGSLOSE Steuerung zum Abschalten des Gleichrichters. Dieser Vorgang wird mit einem geschlossen gehaltenen Kontakt erhalten. Bei erneuter Öffnung wird die Steuerung gelöscht.	Schaltet den Gleichrichter aus und entlädt die Batterie.